Building Telephony
Systems with Asterisk

An easy introduction to using and configuring Asterisk to build
feature-rich telephony systems for small and medium businesses

PACKT

[PUBLISHING]

Building Telephony Systems
with Asterisk

An easy introduction to using and configuring Asterisk
to build feature-rich telephony systems for small and
medium businesses

David Gomillion
Barrie Dempster

PUBLISHING
BIRMINGHAM - MUMBAI

PUBLISHING

Building Telephony Systems with Asterisk
Copyright © 2005 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, Packt Publishing, nor its dealers
or distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2005
First reprint: February 2006

Production Reference: 1010206

Published by Packt Publishing Ltd.
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 1-904811-15-9

www - packtpub.com

Cover Design by www.visionwt.com

PUBLISHING

Authors
David Gomillion
Barrie Dempster

Reviewers
Rob Clews
Barrie Dempster
Alex Epshteyn
David Gomillion
Jan Kolasinski

Technical Editors
Richard Deeson
Niranjan Jahagirdar

Editorial Manager
Dipali Chittar

Credits

Development Editor
Louay Fatoohi

Indexer
Niranjan Jahagirdar

Proofreader
Chris Smith

Production Coordinator

Manijiri Nadkarni

Cover Designer
Helen Wood

PUBLISHING

About the Reviewers

Alex Epshteyn is the developer of Asterisk PBX Manager (a Webmin module for
Asterisk) and the founding principal of Third Lane Technologies, LLC, a company
specializing in VolP software development and Asterisk consulting.

Rob Clews' first affair with a computer was with a Dragon 64. Since then he has
become an avid developer and supporter of open-source software. Meeting Jan, he has
founded Bluetel Solutions where he can stretch technologies to their limits and find the
most efficient way to write and architect code to achieve the best results.

In what seems like a past life, Jan Kolasinski was a publisher for Wrox Press leading
its Professional team. Since then he has been helping a number of small and medium
sized companies apply technologies. In order to formalize this he has founded, with Raob,
Bluetel Solutions where he tries to find new ways to help clients achieve better return on
investments. Rob is the second reviewer.

PUBLISHING

About the Authors

Barrie Dempster was a Network Administrator/IT Manager for a growing call center
when he saw the convergence and dependence of telephony and IT-related fields on each
other. He focused on integration of telephony with IT infrastructure, and took on security
as a career. The increase of voice-over-IP communications has now led to high demand
for these skills, which he now utilizes in his current position as a Scotland-based
Infrastructure and Security consultant for a variety of clients primarily within the
financial sector.

He has been involved in varied projects, from building and deploying web and database
servers to creating custom communication and conferencing systems, most of which are
secured highly in order to survive public networks. He has deployed and used a variety of
PBX systems and, as a strong supporter and user of free and open-source software, has a
serious interest in Asterisk as it combines all of these interests into one extremely
powerful package.

David Gomillion currently serves as Director of Information Technology for the Eye
Center of North Florida. There, he orchestrates all of the technological undertakings of
this four-location medical practice, including computers, software (off-the-shelf and
custom development), server systems, telephony, networking, as well as specialized
diagnostic and treatment systems.

David received a Bachelor's of Science in Computer Science from Brigham Young
University in August, 2005. There he learned the theory behind his computer experience,
and became a much more efficient programmer.

David has worked actively in the Information Technology sector since his freshman year
at BYU. He has been a Networking Assistant, an Assistant Network Administrator, a
Supervisor of a large Network and Server Operations unit, a Network Administrator, and
finally a Director of Information Technology.

Through his increasing responsibilities, he has learned to prioritize needs and wants, and
applies this ability to his Asterisk installations.

PUBLISHING

Table of Contents

Introduction 1
Chapter 1: Introduction to Asterisk 5
What is Asterisk? 5
Asterisk is a PBX 5
Station-To-Station Calls 6

Line Trunking 6
Telco Features 7
Advanced Call Distribution 7

Call Detail Records 7

Call Recording 8
Asterisk is an IVR System 8
Asterisk is a Voicemail System 8
Asterisk is a Voice over IP (VoIP) System 9
What Asterisk Isn't 11
Asterisk is Not an Off-the-Shelf Phone System 11
Asterisk is Not a SIP Proxy 11
Asterisk Does Not Run on Windows 12
Is Asterisk a Good Fit for Me? 12
Trade-Offs 12
Flexibility versus Ease of Use 12
Graphical versus Configuration File Management 13
Calculating Total Cost of Ownership 14
Return on Investment 15
Summary 15
Chapter 2: Making a Plan for Deployment 17
The Public Switched Telephony Network (PSTN) 17
Connection Methods 17
Plain Old Telephone Service (POTS) Line 17
Integrated Services Digital Network (ISDN) 18
TlorEl 18
Voice over IP Connections 19
Determining Our Needs 20

PUBLISHING

Table of Contents

Terminal Equipment 21
Types of Terminal Devices 21
Hard Phones 21

Soft Phones 23
Communications Devices 24
Another PBX 25
Choosing a Device 25
Features, Features, and More Features... 25
Determining True Cost 26
Compatibility with Asterisk 27
Sound Quality Analysis 27
Usability Issues 28
Recording Decisions 28
How Much Hardware do | Need? 28
Choosing the Extension Length 29
Summary 32
Chapter 3: Installing Asterisk 33
Preparing to Install Asterisk 33
Obtaining the Source Files 34
Installing Zaptel 35
Installing libpri 35
Installing Asterisk 36
Getting to Know Asterisk 39
Summary 41
Chapter 4: Configuring Asterisk 43
Zaptel Interfaces 44
zaptel.conf 44
Lines 45
Terminals 48
zapata.conf 48
Lines 52
Terminals 53

SIP Interfaces 54
IAX Interfaces 59
Voicemail 61
Music On Hold 63
Queues 64

PUBLISHING

Table of Contents

Conference Rooms 66
Summary 67
Chapter 5: Creating a Dialplan 69
Creating a Context 69
Creating an Extension 71
Creating Outgoing Extensions 75
Advanced Call Distribution 78
Call Queues 78
Call Parking 82
Direct Inward Dialing (DID) 83
Automated Attendants 84
System Services 87
Summary 89
Chapter 6: Quality Assurance 91
Call Detail Records 91
Flat-File CDR Logging 92
Database CDR Logging 93
Monitoring Calls 95
Recording Calls 96
Legal Concerns 97
Summary 98
Chapter 7: Asterisk@Home 99
CentOS 99
Preparation and Installation 100
The Asterisk Management Portal (AMP) 101
Maintenance 103
Setup 104
Flash Operator Panel (FOP) 105
Flash Operator Configuration Files 106
Web MeetMe 106
Flexibility When Needed 106
A Simple One-to-One PBX 107
Extensions 107
Trunks 108
Routes 108

PUBLISHING

Table of Contents

Customer Relationship Management/SugarCRM 110
Adding Contacts 111
Call Scheduling 111
Administration of SugarCRM 112

Configure Settings 112

User Management 112

User Roles 113
Summary 114
Chapter 8: Case Studies 115

Small Office/lHome Office 115
The Scenario 115
The Discussion 116
The Configuration 116

zaptel.conf 116
zapata.conf 117
musiconhold.conf 117
voicemail.conf 118
modules.conf 118
extensions.conf 119
Conclusions 119

Small Business 120
The Scenario 120
The Discussion 120
The Configuration 121

zaptel.conf 121
zapata.conf 121
musiconhold.conf 122
agents.conf 122
gueues.conf 122
sip.conf 123
meetme.conf 124
voicemail.conf 124
extensions.conf 125
Conclusions 128

Hosted PBX 128

The Scenario 129

The Discussion 129

PUBLISHING

Table of Contents

The Configuration 129
zaptel.conf 129
zapata.conf 130
musiconhold.conf 130
sip.conf 130
voicemail.conf 131
extensions.conf 131

Conclusions 134

Summary 134
Chapter 9: Maintenance and Security 135
Backup and System Maintenance 135

Backing Up Configurations 136

Backing Up Voice Data 138

Backing Up Log Files 139
Backup Scripts 139

Time Synchronization 142
Adding It All to cron 142

Rebuilding and Restoring the Asterisk Server 143

Disaster Recovery Plan (DRP) 143

Asterisk Server Security 144

Internal Access Control 144

Host Security Hardening for Asterisk 147

Integrity Checker 147

Root-Kit Detection 147

Automated Hardening 148

Role Based Access Control (RBAC) 148

Network Security for Asterisk 149

Firewalling the Asterisk Protocols 149
SIP (Session Initiation Protocol) 150
H.323 150
IAX 151
RTP—The Real-Time Transport Protocol 151

Controlling Administration of Asterisk 151

Asterisk Scalability 152

Load Balancing with DNS 153

PUBLISHING

Table of Contents

Support Channels for Asterisk
Mailing Lists
Forums
IRC (Internet Relay Chat)
Digium

Summary

Index

154

155
155
155
156

156
157

Vi

PUBLISHING

Introduction

Telephony systems are an integral part of business, and it's important that the framework
used is flexible enough to cover as many areas of application as possible, and at the same
time is user friendly. This book is an attempt at exploring one such system—Asterisk.

What This Book Covers

Chapter 1 introduces Asterisk and talks about the possible scenarios that would demand
its usage, and the realistic trade-offs that you should consider when choosing it.

Chapter 2 discusses a basic deployment plan, and takes you through various aspects such
as requirements and the how-tos of choosing the right terminal equipment and hardware.

Chapter 3 discusses installation of Asterisk. It starts with a section on preparing a system
for installation, takes you through installation of necessary components, and ends with an
introduction to the way Asterisk behaves.

Chapter 4 deals with the basic Asterisk configuration, and discusses the Zaptel interfaces
in detail, and then the configuration of protocols and various features.

Chapter 5 deals with creating a dialplan. This involves creating a context and extensions,
and the chapter also discusses advanced call distribution and automatic attendants.

Chapter 6 discusses quality assurance issues that concern most companies, and gives an
overview of call detail records, call monitoring, and recording, etc.

Chapter 7 talks about Asterisk@Home—a simplified Asterisk solution that retains most
of its functionality for its so-called "home™ users—and a customer relationship
management system, SugarCRM.

In Chapter 8 we've shown a few case studies of working Asterisk-based phone systems,
and have discussed scenarios for home offices and small businesses.

Chapter 9 deals with Asterisk’'s maintenance and security aspects. The topics range from
backups of configuration files to disaster management plans to server security. This
chapter also discusses Asterisk's scalability aspects and support channels.

PUBLISHING

Introduction

Conventions

In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

There are three styles for code. Code words in text are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code will be set as follows:

[default]

exten => s,1,Dial(Zap/1]30)
exten => s,2,Voicemail(ul00)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items will be made bold:

[default]

exten => s,1,Dial(Zap/1]30)
exten => s,2,Voicemail(ul00)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input and output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample
/etc/asterisk/cdr_mysql .conf

New terms and important words are introduced in a bold-type font. Words that you see
on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen™.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback

Feedback from our readers is always welcome. Let us know what you think about this
book, what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

PUBLISHING

Introduction

To send us general feedback, simply drop an email to feedback@packtpub.com, making
sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in
the SUGGEST A TITLE form on www. packtpub.com or email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub.com/authors.

Customer Support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Errata

Although we have taken every care to ensure the accuracy of our contents, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in text or code—we
would be grateful if you would report this to us. By doing this you can save other readers
from frustration, and help to improve subsequent versions of this book. If you find any
errata, report them by visiting http://www . packtpub.com/support, selecting your
book, clicking on the Submit Errata link, and entering the details of your errata. Once
your errata have been verified, your submission will be accepted and the errata added to
the list of existing errata. The existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Questions

You can contact us at questions@packtpub.com if you are having a problem with some
aspect of the book, and we will do our best to address it.

EEEEEEEEEE

PUBLISHING

Introduction to Asterisk

In this chapter, we will be looking at what Asterisk is, and what it can do for us. As we
explore features, we can make note of what features will help us to accomplish our goals.

What is Asterisk?

This is a fascinating question: what exactly is Asterisk? There are a number of answers,
all of which are accurate.

First, Asterisk is a symbol (*). The symbol represents a wildcard in many computer
languages. This gives us insight into the developers' hopes for Asterisk. It is designed to
be flexible enough to meet any need in the telephony realm.

Second, Asterisk is open-source software. This means that hundreds, if not thousands, of
developers are working every day on Asterisk, extensions of Asterisk, software for
Asterisk, and customized installations of Asterisk. A big portion of the product's
flexibility comes from the availability of the source code, which means we can modify
the behavior of Asterisk to meet our needs.

Finally, and most importantly, Asterisk is a framework that allows selection and removal
of particular modules, allowing us to create a custom phone system. Asterisk's well-
thought-out architecture gives flexibility by allowing us to create custom modules that
extend our phone system, or even serve as drop-in replacements for the default modules.

Asterisk is a PBX

Asterisk is a Private Branch Exchange (PBX). A PBX can be thought of as a private
phone switchboard, connecting to one or more telephones on one side, and usually
connecting to one or more telephone lines on the other. This is usually more cost
effective than leasing a telephone line for each telephone needed in a business.

PUBLISHING

Introduction to Asterisk

Station-To-Station Calls

First, as a PBX, Asterisk offers station-to-station calls. This means that users can dial
from one phone to another phone. While this seems obvious, elementary phone systems
are available (often referred to as Key Systems) that support multiple phones and
multiple lines, and allow each phone to use any line. In operation, the handsets do not
have individual extensions that can be dialed, and so there is no way to initiate a call from
one handset to another. These systems can usually be identified by having all outgoing
lines on every telephone, usually with a blinking light. Unlike Key Systems, Asterisk
allows for station-to-station calls, allowing directed internal communications.

Consider for a moment the following diagram:

2z
=

Handsets

Public Switched
Telephone Network
(PSTN)

In this diagram, each extension (meaning everything to the left of the PBX) can connect
to any other extension by dialing it directly. This means that if a modem were to send a
fax to a local fax machine, it would be done by creating a direct connection between the
devices through the PBX.

Line Trunking

Secondly, Asterisk offers line trunking. In its simplest form, line trunking simply shares
access to multiple telephone lines. These telephone lines are usually used to connect to
the global telephone network, known as the Public Switched Telephone Network, or
PSTN, but can also be private lines to other phone systems.

These connections can be a single analog trunk, multiple analog trunks, or high-
capacity digital connections that allow multiple concurrent calls to be carried on a
single connection.

6

PUBLISHING

Chapter 1

Telco Features

Asterisk supports all of the "standard™ features we would expect from any telephone
company (or telco). Asterisk supports sending and receiving Caller 1D, and even allows
us to route calls based on the Caller ID. Using Caller 1D with the PSTN requires us to
subscribe to that feature with our PSTN connection provider.

Asterisk also supports other features as expected, such as call waiting, call return (*69),
distinctive ring, transferring calls, call forwarding, and so on. These basic features and
more are provided by Asterisk.

Advanced Call Distribution

Asterisk can receive a phone call, look at attributes of the call, and make routing
decisions based on that. If enough information is not supplied by our PSTN connection
provider, then we can ask the caller to input the information, using a touch-tone phone.

Once we make a decision how to route a call, we can send them to a single extension, a
group of extensions, a recording, a voicemail box, or even a group of telephone agents
who can roam from phone to phone. We can use call queues to more effectively serve our
customers while maintaining operational efficiency.

This flexibility gives us the ability to move from just having a phone system to creating
powerful solutions that are accessed through the telephone. Advanced Call Distribution
(ACD) empowers us to serve our customers in the best way possible.

One major differentiating factor between Asterisk and other PBX systems that support
ACD is that Asterisk does not require the purchase of a special license to enable any of
these features. The limit on how many call queues, for example, is determined only by
the hardware we use.

Call Detail Records

Asterisk keeps complete Call Detail Records (CDR). We can store this information in a
flat file, or preferably a database for efficient look up and storage. Using this information
we can monitor the usage of the Asterisk system, looking for patterns or anomalies that
may have an impact on business.

We can compare these records to the bill that the phone company sends out. They allow
us to analyze call traffic, say to run a report to find the ten most commonly dialed phone
numbers. We could also determine the exchange that calls us most frequently so that we
can target our marketing to the right area.

Even more than that, we can look at how long phone calls are taking. We can count how
many calls a specific agent answers and compare with the average. The uses of this
feature are many.

PUBLISHING

Introduction to Asterisk

Using this information, we can also identify abuses of our long-distance calling service.
Employees all around the world steal long distance and time from employers; Asterisk
gives us the tools to detect these possible causes of waste. The importance of calling
records should not be underestimated: this information is invaluable for a variety of
business functions. As many countries operate a national do-not-call list, we can quickly
determine if we have called anyone on the list to ensure that our verification and
checking processes are adequate.

Call Recording

Asterisk gives us the ability to record calls that are placed through the PBX. We can use
this to provide training materials, as examples of calls that went badly or went well. This
can also be used to prove call content to satisfy customers or partners as well as being
potentially helpful in a legal situation. It's important to consider this feature when setting
up your Asterisk service as you may have substantial hardware and storage issues to
address if your PBX is destined to handle and record a substantial number of calls.

As a word of warning: Asterisk provides the feature. It is up to us to determine if it is
legal, appropriate, and helpful to employ it in our particular circumstances.

Asterisk is an IVR System

Interactive Voice Response, or IVR, revolutionizes just about every business it touches.
The power and flexibility of a programmable phone system gives us the ability to respond
to our customers in meaningful ways.

We can use Asterisk to provide 24-hour service while reducing the workload for our
employees at the same time. Asterisk allows us to play back files, read text, and even
retrieve information from a database. This is the type of technology you come across in
telephone banking or bill payment systems. When you call your bank you hear a variety
of recordings and issue commands usually using a touch tone telephone. For example
you may hear greetings and status messages, type in your account number and other
personal information or authentication credentials. You will also often hear
personalized information, which will be retrieved from a database, such as your last
few transactions or your account balance. Systems such as this can be, and have been,
implemented using Asterisk.

Asterisk is a Voicemail System

Asterisk has a fully-functional voicemail system included. The voicemail system is
surprisingly powerful. It supports voicemail contexts so that multiple organizations can
be hosted from the same server. It supports different time zones so that users can track
when their phone calls come in. It even provides the option to notify the recipient of new
messages via email: in fact, we can even attach the message audio!

PUBLISHING

Chapter 1

Asterisk is a Voice over IP (VolIP) System

Asterisk gives us the ability to use Internet Protocol (IP) for phone calls, in tandem with
more traditional telephone technologies.

Choosing to use Asterisk does not mean that we can only use Voice over IP for calls. In
fact, many installations of Asterisk do not even use it at all. But each of those systems has
the ability to add Voice over IP easily, at any time, with no additional cost.

Most companies have two networks: one for telephones, and one for computers. What if
we could merge these two networks? What would the savings be? The biggest savings are
realized by reducing the administrative burden for Information Technology staff. We can
now have a few experts on computing and networking, and since telephony will run on
top of a computer and over our IP network, the same core knowledge will empower our
staff to handle the phone system.

We will also realize benefits from decreased equipment purchasing in the long run.
Computer equipment gets progressively cheaper while proprietary phone systems seem to
remain nearly constant in price. Therefore, we may expect the costs for network switches,
routers, and other data network equipment to continue to decrease in price.

In most current phone systems, extensions can only be as far away as the maximum
cabling length permitted by the telephone system manufacturer. While this seems
perfectly reasonable, sometimes we would like it not to be so. When using VolP we can
have multiple users using the same Asterisk service from a variety of locations. We can
have users in the local office using PSTN phones or IP phones, we can have remote VVolP
users, we can even have entire Asterisk systems operated and run completely separately
but with integrated routing.

One way to slash overhead is to reduce the amount of office space required. Many
businesses use telecommuting for this purpose. This often creates a problem: which
number do we use to reach a telecommuter? Imagine the flexibility if telecommuting
employees could simply use the same extension when at home as when in the office or
even when using their mobile!

Voice over IP allows us to have an extension anywhere we have a reasonably fast
Internet connection. This means employees can have an extension on the phone system at
home if they have a broadband connection. Therefore, they will have access to all of the
services provided in the office, such as voicemail, long-distance calling, and dialing other
employees by extension.

Just as we can bring employees into the PBX from their homes, we can do the same for
remote offices. In this way, employees at multiple locations can have consistent features,
accessed in exactly the same way, helping to ease the burden of training employees.

PUBLISHING

Introduction to Asterisk

But this is not all that VVoice over IP can give us. We can use an Asterisk server in each
office and link them. This means that each office can have its own local lines, but office-
to-office communications are tunneled over the Internet. The savings to be realized by
avoiding call tolls can be significant. But there's more.

Internet
or
Private Network

Office A

Office C

Once we have our offices linked in such a way, we can handle calls seamlessly,
irrespective of which office the employees are in. For instance, if a customer calls Office
A to ask about their account, and the accounting department is in Office B, we simply
transfer the call to the appropriate person at the other office. We don't have to care about
where that other office is. As long as they have a reliable internet connection, they don't
even have to be in the same country.

We can route calls based on cost. If it is more cost effective, we can send our calls to
another office, where the remote Asterisk server will then connect them with the regular
phone network. This is commonly referred to as "Toll Bypass".

Another benefit of linking our phone systems together is that we can route calls based
upon time. Imagine we have two offices, each in different time zones. Each office will
probably be open at different times. To handle our customers effectively, we can transfer
calls from a closed office to one that is open. Again, since we are using an Internet
connection to link the offices, there is no additional expense involved in doing so.

By linking our offices together using Voice over IP, we can increase our customer service
while decreasing our expenses: a true win-win situation.

The existence of all these options doesn't necessarily mean we should be using them, but
with the versatility of Asterisk we may use and ignore options as it suits our
requirements. If we were to use every single line type and feature that Asterisk supports
this could lead to a very complicated and difficult-to-administrate system. We should
choose the subset that fits our requirements and which would function well within our
current communications setup.

10

PUBLISHING

Chapter 1

What Asterisk Isn't

Now that we've discussed what Asterisk is, we need to discuss what Asterisk isn't. By
seeing what Asterisk doesn't do, we can evaluate how important these pieces are to us, to
help us determine if Asterisk is right for us.

Asterisk is Not an Off-the-Shelf Phone System

There are phone systems that can be ordered that are so easy to install, configure, and use
that anybody without any training could do it. Asterisk is not one of them.

Asterisk's flexibility and robust feature set necessitate a host of configuration options.
The best set of options to use will vary between installations, and sometimes vary within
the same installation depending on the use. For instance, some handsets should have call
waiting, while for other users, it is nothing but a distraction.

We can configure anything we need to with Asterisk, but there is a learning curve
associated. In fact, sometimes there is programming involved in changing an attribute of
the phone system. This is certainly something to consider.

While Asterisk in and of itself is not an out-of-the-box solution, there are packages based
on Asterisk that are. For instance, a system called Asterisk@home is a single-CD
installation that installs Linux, Asterisk, and a number of automated configuration tools.
These tools allow the easy configuration of extensions, lines, and a few other features;
however, to make this work, certain other features are not available.

Asterisk is also offered by companies that will customize the system specifically for your
needs. These companies sell a server, the software, and the handsets at a package price,
much as we see with proprietary phone systems. The difference is that the GNU Public
License guarantees that we can view and modify the source code.

So, Asterisk in its purest form is not an off-the-shelf telephone system, although it is
flexible enough to be used as one.

Asterisk is Not a SIP Proxy

Asterisk supports Session Initiation Protocol (SIP) for VolP. Calls can be made and
received with SIP using Asterisk.

In SIP, devices register with a SIP server. This server allows devices to locate each other
to establish communications. When large numbers of SIP devices are used, a SIP Proxy is
often employed to handle the registrations and connections in an efficient way.

Asterisk, however, cannot act as a SIP Proxy. SIP devices can register with Asterisk, but
as the number of SIP devices increases, Asterisk is not able to scale very well. Therefore,
if we intend to use over about 100 SIP devices, Asterisk may not be appropriate.

11

PUBLISHING

Introduction to Asterisk

While Asterisk is not a SIP proxy, Asterisk can be configured to use one for registrations.
One commonly used proxy is SIP Express Router, or SER. SER is an open-source SIP
proxy that helps Asterisk scale in very large installations.

Asterisk Does Not Run on Windows

At one point, Asterisk had a demonstration CD that worked with Windows; however,
Asterisk does not run on the Microsoft platform. Asterisk requires near real-time access
to system resources. It also requires hooks into certain resources. As such, Asterisk is
built to use Linux, the open-source *NIX operating system.

Is Asterisk a Good Fit for Me?

Looking at what Asterisk is and is not, the natural question follows: is Asterisk right for
me? This is a vitally important question that should be given serious consideration. Let's
take a moment and look at some of the considerations we must explore before we commit
to using Asterisk.

Trade-Offs

There are a series of trade-offs we must consider with Asterisk. Choosing Asterisk will
lock us into certain choices, while others will be available whether we install an Asterisk
server or not. We will now examine some of these trade-offs so that we can gauge the
impact they have on us.

Flexibility versus Ease of Use

Asterisk is a very powerful framework into which we can install almost anything. We can
configure each piece of Asterisk to the minutest detail. This gives us an amazing amount
of flexibility.

This flexibility does not come without a price. Each of these details must be
researched, understood, and tried. Each change we make affects other parts of the
phone system, whether for good or for bad. Asterisk is not an easy-to-use platform,
especially for the beginner.

There is a learning curve, but it is one that can be surmounted. Many developers have
become experts in telephony; many telephony experts have mastered server
administration. But each of us must decide what we expect from our phone system. | like
to think of it in three major categories, as outlined in the following table:

12

PUBLISHING

Chapter 1
Description Solution
| want to plug the telephone system in A proprietary phone system is probably
and never think about it again. | want your best bet. Many offer a pre-configured
someone to call when things are not system, and when changes are made, a

working. | do not plan to add anything to certified consultant will be required.
the system once it is set up.

| don't know much about phone systems, Either use a packaged version of Asterisk
but | want to learn. | need a phone system or have a consultant build a customized

soon. I'd like to have flexibility and Asterisk server. Learn to use Asterisk.
additional features, and may change the Build a couple of Asterisk servers just to
configuration of my phone system from explore. Add features as necessary.
time to time.

| want to learn and build my own phone Build an Asterisk server from the ground
system. | am interested in creating a up. Much will be learned in the process,
custom solution for my problems. | am and the result will be an extremely
willing to accept the responsibility if powerful business tool.

something doesn't work, and take the
time to figure out why.

These are, of course, not distinct categories. We each fall into a continuum. It is important
to realize that Asterisk, as great as it is, is not the right solution for everybody. Like any
technology we implement, we must consider its impact on the business, and decide whether
it will become something useful that enables us to work better, or whether it will require too
much maintenance and other work to make it an efficient addition. This depends entirely on
our purposes and the other technology we have that requires our attention.

Graphical versus Configuration File Management

Asterisk currently uses plain text files to configure most options. This is a very simple
way to create, back up, and modify configurations for those who are comfortable with
command-line tools.

Some PBX systems offer a Graphical User Interface (GUI) to update the configurations.
Others don't allow the configuration to be changed except by dialing cryptic codes on
telephone handsets. Still others cannot be configured at all, except by certified technicians
who receive the required software and cables from the phone system manufacturer.

A few good open-source tools are being created to ease the management of Asterisk.
However, to get the full ability to customize Asterisk, editing of text files is still required.
To help get used to this method of configuration, this book focuses on the text files and
does not rely on any GUI package.

As we evaluate Asterisk, we must ask ourselves if we are happy about working with text
configuration files to configure our phone system. If we are unwilling or unable to do so,
Asterisk may not be the best choice.

13

PUBLISHING

Introduction to Asterisk

Calculating Total Cost of Ownership

Asterisk is distributed as free, open-source software. The only costs involved with
Asterisk are hardware, right? Well, maybe not.

As we have been discussing, Asterisk is very flexible. Determining how best to use the
flexibility can quickly become a huge time-sink. Compatible handsets are also not free. If
we are going to use the G.729 protocol, which compresses VolP traffic by a factor of
eight while maintaining excellent voice quality, we will also have to pay licensing fees.

With commercial phone systems, the costs are typically higher than with Asterisk;
however, they are a fixed, known constant. Depending on the way we use Asterisk, costs
can vary greatly.

The total cost of owning Asterisk can also include downtime. If we choose to support
Asterisk on our own, and have to work to try to get Asterisk back up after a failure, there
is an opportunity cost involved in the calls we should have received. This is why we
should only choose to support our phone system internally if we have the appropriate
resources to back that up.

Total Cost of Ownership (TCO) is not an easy calculation to make. It involves
assumptions of how many times it will break, how long it will take us to get it back up
and running, and how much consultants will charge us if we need their services.

TCO is only useful when comparing phone systems to each other. The following
elements should be included when comparing TCO of multiple phone systems:

e Procurement Cost: This is the cost to buy the PBX. In the case of
Asterisk, it is only the cost of the hardware; other systems will include an
element of licensing.

o Installation Cost: This is the cost to configure and deploy the PBX. Some
companies choose to do the deployment in-house; in such instances, there is
still a cost, and to enable fair comparisons, it should be included.

e Licensing Cost (one-time): This is the cost of any one-time licensing fees.
Some PBX systems will require a license to perform administration,
maintenance, connect to a Primary Rate ISDN line (PRI), etc. In Asterisk,
this would include the G.729 licensing cost, if required.

e Annual Support Cost: This is the estimated cost of ongoing maintenance.
Of course some assumptions will have to be made. To keep the comparison
fair, the same assumptions should be carried over between vendors.

e Annual Licensing Cost: Some phone systems will have an annual cost to
license the software on the handsets, as well as a license to be able to connect
those handsets to the PBX.

14

PUBLISHING

Chapter 1

When we have created the table, we can calculate the TCO for one year, two years, and
so on. We can then evaluate our business and decide what costs we're willing to incur for
our phone system.

Return on Investment

The cost of owning a phone system is only one piece of the Return on Investment (ROI)
puzzle. ROI attempts to quantify an expenditure's effect on the bottom line, usually used
to justify a large capital outlay.

Just as an example, one phone system that | installed went into an existing business. Its
existing phone system had an automated attendant that had the unfortunate habit of hanging
up on customers if they pressed the 0 key, or if they didn't press any key for 5 seconds.

What was the ROI for moving to a new phone system? Not having angry customers who
got hung up on is a hard value to calculate. According to one of the owners of the
business, that value was infinite. That made the cost of Asterisk very easy to justify!

ROI is basically the TCO subtracted from the quantification of the benefit (in money) to
the business. So, if we calculated that a new phone system would save $5000 and cost
$4000, then the ROI would be $1000.

Another interesting calculation to make, which is also categorized as ROI, is the time for
the cost to be recouped. This calculation is one that | find helpful in making a business
case for Asterisk.

Suppose a phone system costs $5000 to install. Using toll bypass, you can save a net
$500 per month. In 10 months, the cost of installing the system will be swallowed up in
the savings.

These are simple examples, but Return on Investment can help to justify replacing an
existing phone system. By having these numbers prepared before proposing to replace the
phone system, we can have a more professional appearance and be more likely to succeed
in starting our Asterisk project.

Summary

Asterisk is a powerful and flexible framework, based on open-source software. It can be
used to create a customized PBX for almost any environment. But it is not always the
best choice for reasons we have just explored. We must consider this carefully in order to
be confident that Asterisk is the right choice for our situation and ensure that the time and
money invested in setting up the Asterisk service is a worthwhile outlay.

15

EEEEEEEEEE

PUBLISHING

Quality Assurance

While these extensions are useful, there is a danger, and we must consider security.
Clearly, we do not want just any employee to be able to listen to calls that are in progress.
And more than that, we really don't want our customers to be able to accidentally listen to
calls that are in progress.

A good way to handle this problem is to create a separate context just for monitoring
extensions. Then, designate a single telephone handset that will be able to do nothing
but monitor extensions. This handset should be the only phone in the monitoring
context, and the monitoring context should not be included in any other context. Keep
that handset under lock and key. Not only will this keep from people overhearing
embarrassing or confidential information, it will also go a long way towards fostering
trust with the employees.

Recording Calls

The last of all of the Quality Assurance methods we will discuss is the call recording
capability of Asterisk. This is highest on the Big Brother chart because phone
conversations can be archived forever and reviewed on demand. Therefore, an
employee's entire telephone history can be called up at any time.

This feature can be accessed from a number of different sources. First, we can configure
specific call queues to record calls. This is done in the queues. conf file, for each
individual queue. We set it thus:

[100]

hoﬁifor—format = wav

mon ItOI’—_] oln = yes
The first line tells Asterisk to record the conversation in the .wav format. This is the best
choice because it is most compatible with other operating systems. Since archived
conversations can be burned to CDs, compatibility is a high priority. The second line tells
Asterisk to join the two files (in and out) into one file. If we do not do this, we will only
hear half of the conversation. To take advantage of this feature, we must have soxmix
installed on our Asterisk server. The Red Hat packages that contain sox are missing
soxmix; therefore, to install soxmix on Red Hat Linux, we need to do so from source.

All calls coming into the queue will be recorded. The name of the file will be the unique
ID that Asterisk generates for every call. If we wish to change this, we can do so by
adding something like the following in extensions.conf:

exten => 100,1,SetVar (MONITOR_FILENAME=${DATETIME}-${CALLERIDNUM})
exten => 100,2,Queue(100)

This will record all calls coming through the queue named 100, in _wav format. We then
are free to encode them into MP3 format if we wish to save space.

96

PUBLISHING

Chapter 6

Aside from recording calls in queues, we can also monitor arbitrary calls through the use
of the dialplan. The name of the application that records a channel is Record. To start
recording, we call the application like this:

exten => 200,1,Record(${TIMESTAMP}${CALLERIDNUM}-${EXTEN}.wav)
exten => 200,2,Dial(SIP/1001)

With just one line of code in our dialplan, we can start monitoring calls. If we want, we
could even insert this line into our macro definitions for standard extension types. Or, we
could do something like:

[incoming]

exten => __,1,Record(${TIMESTAMP}${CALLERIDNUM}-${EXTEN}.wav)
exten => __,2,Playback(thiscal Imaybemonitoredorrecorded)

exten => __,3,Goto(default,${EXTEN},1)

In three lines of code, we have enabled recording for all incoming phone calls. We have
even notified our customers that the call may be recorded. We have the power. Should we
use it?

Legal Concerns

This is not legal advice. Only a qualified attorney can advise you on your
particular situation.

It is very important to note that, just because we can monitor calls, doesn't mean we
should, or even that it would be legal to do so. Many states in the United States of
America are 2-party or all-party states, meaning that all parties to a conversation must
know that a call is being recorded for it to be admissible in court.

More than that, there are privacy laws in place to protect everyone. Only a careful study
of all applicable laws can tell us if we are in the clear. We should never record any phone
calls until we have spoken to a lawyer.

But aside from the legal issues, there are also moral issues. Maybe it depends on our
intent when we call. Are we recording the calls to help our employees improve? Are we
recording the calls so that we have an accurate representation of what was agreed upon?
Or are we recording calls to try to trap someone, or to pull information out of calls to be
used out of context later?

97

PUBLISHING

Quality Assurance

Summary
As we have seen in this chapter, Asterisk gives us the power to:

e record call information
e monitor conversations
e record the conversions themselves

The purpose of these capabilities is to provide us with options for using our system
effectively. It is our responsibility to use these powers appropriately.

There is no point recording all calls if you are never going to use those recordings.
Similarly a database is overkill if you have no real interest in your calling history.

However there are many reasons to use these features, for instance to produce reports or
answer questions that other users or departments have regarding the telephone system.
The users of the system will know more about what they will need in order to carry out
their day to day duties, which is why we spend time figuring out exactly what they need
early in the deployment plan: to ensure the system provides everything that is needed.

98

PUBLISHING

Asterisk@Home

As we discussed when introducing Asterisk, flexibility is a primary focus. Asterisk can
be used for a variety of different purposes and each available feature can be tailored to
the specific needs of any organization. Asterisk@Home retains some of the flexibility
and adds a massive amount of convenience and ease of use. It offers web-based
configuration, web access to voice mail, reporting, and other functions, which we will
cover shortly. All these functions can be added to your own Asterisk installation as they
are all based on existing Asterisk tools; the real benefit of Asterisk@Home is that you
don't have to set these up manually to make them work together. Asterisk@Home installs
and sets up the base configuration for all of the tools it provides.

It's extremely easy to set up and use; the downside to this is that you lose some of the
flexibility—you can't choose which OS to base your Asterisk system on, for example,
and you can't fully customize the configuration, which becomes a hindrance in larger
Asterisk installations.. Its name, however, understates its scope; there have even been
discussions to change it because of its confusing nature. Its functionality goes quite a bit
beyond that needed by a home user and it can be easily set up to handle a small-to-
medium-sized business's calling needs. However, beyond that size, it becomes a bit
harder to scale effectively than a plain Asterisk install.

CentOS

Asterisk@Home is designed around the CentOS distribution of Linux. CentOS is built from
the Red Hat Enterprise source packages. It has a relatively small core team of developers
that concentrate on packaging the OS without Red Hat's proprietary components. The main
focus of CentOS is to provide a freely available operating system with the packages and
features needed at enterprise level, without the cost associated of the base distribution, Red
Hat Enterprise Linux. CentOS does, however, offer a range of commercial support, which
is invaluable to most enterprises and thus is an option we can consider.

PUBLISHING

Asterisk@Home

CentOS isn't the focus of this chapter and it doesn't really have too much bearing on
our use of Asterisk@Home other than knowing basically how to use and update it.
We will focus on the setup and maintenance of Asterisk@Home and the features it
provides for us. It would be beneficial if we spent time getting to know CentOS if we
decide to use Asterisk@Home.

Preparation and Installation

Asterisk@Home recommends a minimum of a 300Mhz processor and 128 MB of RAM,;
however, CentOS will complain at boot if there is less than 256 MB. The amount of
RAM required has a direct correspondence with how heavily used the system will be. As
Asterisk@Home is Asterisk with a few other services added, we can pretty much scale it
similarly. We do have to consider extra resources for the additional services we have
running such as the web server and the MySQL server.

Asterisk@Home comes in two flavors: a source package that we can install on a CentOS
system, and an 1SO image that can be burned and installed as a full OS. The ISO installs a
modified CentOS system automatically and sets up the necessary Asterisk@Home services.

We can obtain the ISO from http://sourceforge.net/projects/asteriskathome/

After downloading and burning the image to disk, reboot the target machine with the
Asterisk@Home CD in the drive, and wait for the prompt, which should look like
the following:

boot: _

If at this point we hit Enter, the installer will start up and begin to install CentOS with
Asterisk@Home on the first primary hard disk. It's very important to ensure that this disk
is the disk we want to use and that no important data is held there as all data will be lost.
From this point onwards installation is entirely automatic, and we can leave it for a few
minutes while it prepares the machine, installs the OS and the necessary programs for
Asterisk@Home—including Asterisk, MySQL, Apache, and so on. It's a good time to
gather the documents we need to configure Asterisk, such as our lists of extensions and
our service provider account details. We'll need the same information as in previous
chapters where we set up Asterisk manually; now, however, we don't need to worry so
much about Asterisk's configuration syntax as we have a friendly GUI-based setup
system that takes care of most things.

Installation of Asterisk@Home is extremely simple and as long as all of our hardware has
Linux support, there should be little issue getting the system installed.

We can configure advanced options and modify the kernel boot parameters if necessary
by hitting one of the keys F1-F5 at the boot prompt (this usually isn't necessary). F5 is of
particular note as this runs the CD as a rescue disk, which we can use to repair a machine
that refuses to boot.

100

PUBLISHING

Chapter 7

Also, if we have problems getting the OS installed from the CD we can enter Iinux
mediacheck at the boot prompt to confirm the integrity of the installation disk, something
worth doing to ensure that the 1ISO was burnt properly rather than waiting for it to break
during installation.

When the system has finished installing, it should reboot and leave us at the login

prompt. We should log in as root and change the default system passwords. The default

root password is "password". The commands we need to run are:

passwd ;to change our root password

passwd admin ;to change the admin password for SugarCRM

passwd-maint ;to change the maint user®s password for the Asterisk
Management Portal

passwd-amp ;to change the amp user®s password
passwd-meetme ;to change the Web MeetMe user®s password

It's important that we change these passwords as soon as possible to ensure we don't
deploy the system with default passwords with the risk of a possible security breach.

After we have the passwords set, it's time to ensure we can access the machine over the
network: firstly we should check if the machine has picked up an IP address at boot. We
should see at login if we have an IP, but to be absolutely sure, we should run ifconfig
and check that an IP address has been assigned to our required network interface.

ifconfig ethO | grep "inet addr™

This should show a line containing our IP address. If no IP address is shown or we want
to set a static IP for the Asterisk box, which is often more useful, then we can run
netconfig. In this case, we will have to input the network settings for the machine,
namely the IP address we want to use, the subnet mask, default gateway, and DNS server.

netconfig ;Enter IP details
/etc/init.d/network restart ;Apply the changed settings

IP Addressing

As we may have SIP clients and as we access Asterisk@Home using a web
browser, it is usually beneficial to have the Asterisk@Home machine configured
with a static IP, or if we are using DHCP to ensure the address is reserved so
that it doesn't change. This ensures we can always find the server without
reconfiguring clients.

The Asterisk Management Portal (AMP)

Now that our system is installed, base passwords are set and we have network connectivity,
we can begin to configure the server to perform its role. This is done by using the web
management utilities the system provides and in some cases, when necessary, modifying
the underlying Asterisk configuration files.

101

PUBLISHING

Asterisk@Home

We will take a look at the functionality provided with the web interface and then follow an
example setup, which will create a working Asterisk@Home server with a single PSTN
line and a single SIP extension.

The first place we want to look is most likely the management portal, which allows us to
configure most features of the Asterisk system in an arguably eye-pleasing and user-
friendly fashion. With this interface, we can manage everything including extensions,
ring groups and trunks, our MySQL database, and even report generation by the system.

To get to the management portal, open a web browser and type the following URL in the
address bar: http://<AsterisklIP>/ (use the IP address we set earlier) you should be
presented with a screen like this:

Asternisk@Home

Welcams
Web-access to Volcemall
CRM
Flash Operator Panel
Web MectMe Control

Asterisk Management Portal

If you click on Asterisk Management Portal (or go there directly with
http://<AsterisklIP>/admin/). We will be prompted for a password to which we will
reply with user maint and the password we previously set for this user. We will now be
presented with four menu options at the top right-hand corner, as shown below:

Asterisk o\ ATai . . .
p Management Maintenance * Setup * Reporis * Panel
Portal

Administration

Wel I
\L‘ Language: | English j

AMP

Welcome to the Asterisk Management Portal 1.10.008

102

PUBLISHING

Chapter 7

Maintenance

Unsurprisingly this section is where we can maintain the system, check the status of
services and access the back-end database, for example.

System Status

This page shows the current status of the system. It should show whether or not
Asterisk, cron, secure shell, and the web server are running and give us the option
of rebooting or shutting down the machine.

Cisco Phone

This page gives us access to the configuration for Cisco IP phones. We can add,
edit, or delete the automatic configuration scripts for these devices.

Config Edit

This section lets us access the configuration files for Asterisk and CentOS itself
via a web-based editor. For example, we can edit Asterisk.conf, resolv.conf,
and any other files in the Zetc directory. This becomes useful when we find an
area of the GUI that doesn't fit our requirements for customizing the system and
have to edit the relevant configuration file by hand.

PHPMyAdmin

This gives us access to the web-based MySQL management tool
PHPMyAdmin. This tool is extremely useful for Asterisk@Home since much
of the configuration and logs are held in a MySQL database. We can back up
the databases, run SQL queries to view or modify the existing databases, and
even add databases of our own.

Sysinfo

This page gives an overview of the current system state—covering network,
memory and hard disk utilization as well as some system specifics.

Asterisk Info

This is also overview information, but focusing on Asterisk itself. We can see
information about SIP, Zaptel, and IAX usage as well as version and system
information for the Asterisk service.

Webmail

This gives access to the built-in webmail system, which is also useful if we use
the server to store our voicemail as email attachments. It can be used even if we
don't email the voicemail attachments.

We can also use the maintenance section of the interface to view system logs, to upload
audio files for use by Asterisk, and to download backups of the system.

103

PUBLISHING

Asterisk@Home

Setup

Under this section, we will find the relevant pages for configuring our extensions, lines,
trunks, conferences, and other Asterisk features.

104

Incoming Calls

Here, we can configure how incoming calls from the PSTN are handled. We can
route them to a receptionist, extension, ring group, or queue, and optionally have
this change automatically at specified times, such as outside working hours.

Extensions

To add an extension we would use this section. The information we would
provide would be the protocol in use (e.g. ZAP), the extension number,
password, the user's full name, and whether or not we would like to record
incoming and/or outgoing calls for this extension.

This obviously is simpler and more intuitive than modifying the Asterisk
configuration files directly, although we do lose a little bit of flexibility in how
these extensions are added. We can make up for this with some hand-hacking as
required. We can also configure voicemail for the extension here if we wish.

Ring Groups
If we need a group of extensions to act together, as covered in a previous chapter,

we need to set up ring groups. This section lets us create groups and detail the
extensions that we would like to be in these groups.

Queues

If we expect largish volumes of calls, then we will need to queue them and this
section is where we configure our queues. To configure a queue, we provide the
ID, name, password, CID prefix, and available agents. We can also add on-hold
music and set other queue options such as announcements and their frequency.

Digital Receptionist

A digital receptionist can be used for fail-over when a queue is at capacity or an
extension isn't available. We can record greetings for this here and set it up on the
required extension. These receptionists can also obviously be dialed directly, if
required as information systems for example.

Trunks

Allows us to add a variety of trunk types such as SIP and IAX to our system
much as we did in previous chapters. A nice wizard-based system will prompt us
for all the necessary parameters such as trunk type, name, DIDs and so on.

PUBLISHING

Chapter 7

Outbound Routing

We should now be aware whether calls to different places should be routed over
different providers. For example we may have a local service and a VVolP server
where we use VolIP for international calls and the local service for local and
national calls. In this section we can configure dial patterns to ensure we route
calls over the most efficient and cost-effective line.

DID Routes

We can easily associate our specific DIDs to their corresponding extension or
other service.

On hold Music/System Recordings

We can record, upload, and manage our various audio files for use with the system.

Backup and Restore

We can make one-off backups as well as complete restores of the system. This
may be slightly useful but a fully implemented backup strategy, managed outside
of the AMP interface, would be more beneficial to us.

General Settings

Here we can configure settings such as the number to dial for an outside line and
a fax machine extension or email address.

Reports

As well as setting up and maintaining our system we may also require various
reports. Here we can view reports by date and we can view full call logs, and
compare calls, as well as monitor monthly and daily traffic. This function is
provided by the Areski Asterisk-stat tool (http://areski .net/
asterisk-stat-v2/).

Flash Operator Panel (FOP)

This panel is extremely useful as it shows us all extensions, conferences, and queues with
details of their status. We can use this to get a current overview of system usage. It's a
Flash-based real-time interface to the system state. It can also be used to hang up, transfer
and originate calls via drag and drop as well as provide "pop-up" functionality where the
customer's details appear on screen according to their CLI details. All this can be
protected so as to restrict agents' access to every function of the panel.

It's quite an intuitive interface, so most actions are taken with button clicks and mouse
movements; for example dragging a free channel to a bridged channel will allow us to
barge into the existing call.

105

http://areski.net/asterisk-stat-v2/
http://areski.net/asterisk-stat-v2/

PUBLISHING

Asterisk@Home

Flash Operator Configuration Files

The FOP can be configured by editing the configuration files that are shipped with it.
They can be found in the /var/www/html folder and can also be accessed from the
Asterisk Management Portal.

The files include:

e op_astdb.cfg

e op_buttons.cfg

e op_buttons_additional .cfg
e op_buttons_custom.cfg

e op_server.cfg

e op_style.cfg

op_server .cfg is the most important for initial setup. Here the main FOP configuration
lives, including the IP address of the Asterisk service, the username and password for
accessing FOP, as well as any debugging settings that should be applied. You can also
configure your available conferences here for example. The other files can be used to add
customized settings such as extra buttons for the system and modifications to the style of
the FOP.

Web MeetMe

Web MeetMe is a web-based front end to the MeetMe add-on for asterisk. It allows us to
monitor and control conferences. By clicking on Web MeetMe Control on the
Asterisk@Home web interface, we are taken to the interface for this program. We access
it by inputting the conference number, taking us to a screen that lists all the participants
in the conference. We are made aware of the caller's name, user ID, channel, and which
mode they are in, such as "listen and talk" or "listen only". We can also modify these
modes by clicking a link, and we can remove a participant from the conversation entirely.
This sort of control is extremely handy for users not comfortable controlling a conference
from their handset, as the visual cues and graphical interfaces to commands make it
extremely easy to get to grips with.

Flexibility When Needed

We have looked at a few graphical configuration tools that add a lot of convenience and
ease of use to the Asterisk system. As with any GUI, the focus is clarity, ease of use, and
intuitive design. When we take a powerful command-line or service-based application
and add a GUI to it, there is often a loss of flexibility. As Asterisk holds flexibility as one
of its most important aspects, this may seem like a major downside to Asterisk@Home.

However, we can still get under the skin and make up for some of the shortcomings in the
graphical interfaces. As we have seen, the Asterisk Management Portal provides a direct
link to the text configuration files; a testament to the fact that the GUI is merely a layer
upon a powerful underlying system.

106

http://10.0.0.200/maint/phpconfig/phpconfig.php?file=op_server.cfg§ion=op_server.cfg

PUBLISHING

Chapter 7

If we find that there are inadequacies in the GUI for us, then we can edit these files by
hand in order to get the functionality we need. There is one major caveat with this,
however: we must ensure that we are attentive to the automatic settings produced by the
GUI and ensure that any alterations we make are going to be compatible with the GUI, or
else we risk breaking the interface entirely; this can be quite a hindrance if our system is
to become complicated. This still restricts us—we can't tailor Asterisk@Home to the
same degree as we can with Asterisk—and so it isn't always the best option. If we have
trouble customizing Asterisk@Home to our need, then creating our own Asterisk build
may be a more viable option.

A Simple One-to-One PBX

Now that we have an overview of how the main features of the Asterisk@Home system
are customized, we can create a simple PBX for handling a single line and extension for a
home user. We can also take the knowledge of call routing gained from previous chapters
and apply it to Asterisk@Home: all of the concepts remain the same, we just apply them
differently, and the result is virtually indistinguishable.

Extensions

Firstly we will configure our extensions, by opening up the AMP. Click on Setup and
find Extensions on the left-hand side. Then configure the extension screen as follows
(you may wish to change some settings to fit your own needs):

Account Settings:

phone prolocal: slF j fo2a33 j

exlension number IW

-.-\'Iﬂminl: W

PAESWDIGE

Tull paaeee: h—.‘a'riE Dempster

Rerord INCOMING: # Always ¢ Mever © On-Deonsd

Reeord QUTGOING: & Alwavs ¢ Mever © OnDemand

Volcemail & Mrectory: |rr'5!‘||-.=!|': hd
voiremeil passaord: (1111

email address: |~.5er@rjm~'a A.com

pager =mail address: |

ermall atlachment: & yes o
Play CID: © yes o
Play Ermvelope: T yes i no
Flay Nextk: © yea * o
Dielets Vimatl: Foyes O onw

107

PUBLISHING

Asterisk@Home

After we have configured the extension, click Add Extension on the bottom right of the
screen. This sets up extension 200 for a SIP based phone. We need to click the red bar
that appears afterwards to apply the changes to the system.

Trunks

We can now add the trunk for our PSTN interface. We do so by clicking Trunks on the

left-hand side, clicking on Add ZAP Trunk (we can add other trunk types as discussed in
previous chapters, such as SIP and 1AX), and then configuring the trunk as follows (we
may also want to delete the default trunk go while here):

General Settings
Outbound Caller ID: I555555555

Maximum channels: Il

Outgoing Dial Rules
Dial Rules:

Clean & Remove duplicates |

Dial rules wizards: I(pick one) |

Outbound Dial Prefix: |9

Outgoing Settings

Zap Identifier (runk name]): |1|

Obviously we would replace the 555555555 with our own phone number. Again
remember to click the red bar afterwards. It's important to note that when we make
calls, there is often no check made against the caller ID number we present so we could
present anything here. We must verify that it's completely accurate or we may lose the
ability for our contacts to recognize us and call us back. This can often be used to an
advantage when we want to control the number we present.

Routes

Now that we have extensions and trunks, we require incoming and outgoing calling
routes so that calls get to their correct destinations.

108

PUBLISHING

Chapter 7

Firstly create an incoming route by clicking on Incoming Calls and configuring it

as follows:

Incoming Calls

Send Incoming Calls from the PSTN to:

regular hours: times I?:55—1?:05 days Imon—fri :
" Digital Receptionist:l |

& Extension: | "Barrie Dempster' <200> |

" Ring Group: j
© Queue: j

after hours:

" Digital Receptinnist:l -

& Extension: | "Barrie Dempster' <200> |
" Ring Group: j
© Queue: j

Override Incoming Calls Settings

" 1o override [obey the above settings)
* force regular hours
" force after hours

Then click Submit Changes and our little friend the red bar to confirm.

We also require outgoing routes so that we can route our calls through the trunk that we
have set up. Do this by clicking Outbound Routing and then configuring it as shown n the
screenshot that follows. You can modify the dial pattern here and can add alternative
routes with differing patterns.

109

PUBLISHING

Asterisk@Home

Route Name: IPSTN
Route Password: |1 111

Dial Patterns

NESE e,
N0
INKENHARHHK

Clean & Remove duplicates |

Insert: Pick pre-defined patterns j

Trunk Sequence

0 [zapn =[x

Add

)

We should now be able to make and receive calls from our system over the PSTN. We
should also have working voicemail.

Customer Relationship Management/SugarCRM

Also provided with Asterisk@Home is a Customer (or Contact) Relationship
Management system (CRM), which can manage a communication relationship with a
contact. As we live in a society with multiple levels of communication and we have many
conversations per day by fax, email, telephone, face to face, and so on, managing and
collaborating these can be a nightmare. This is where a CRM system becomes useful. We
can take all these calls, emails, text messages, faxes, and other methods and manage them
within a single system. SugarCRM allows us to do this and while doing so integrates with
Asterisk@Home and its calling features.

With SugarCRM, we can manage our contacts, calls, and tasks and make others aware of
what we are doing to share our current state of communication on a particular topic, task,
or customer. "Has Bill in sales called that customer yet?" "Did Jane send Tom the status
reports?" Questions like these can be answered easily with a CRM system. In this section,
we take a look at a few of the features that SugarCRM provides.

110

PUBLISHING

Chapter 7

Adding Contacts

By clicking on the CRM link on the front page of the Asterisk@Home web server, we are
taken to a login page where we can log in as the user admin with the password we set for
this user previously. On the first screen, we will see any upcoming tasks that we need to
attend to along with anything else that's currently outstanding. From here, we can move
around and add contacts, tasks, and so on to the system.

If we click on Create Contact, we will be taken to a very large screen with a massive
number of empty boxes for us to fill in; luckily not every field is required and we only
need to add a surname at minimum, although the system does not become useful until we
add some contact details. We should create one contact with at least an email address and
telephone number for now, so that we can try out the other functions on offer.

Call Scheduling

Now that we have a contact in the system, we can schedule calls and appointments, and
send emails to them. After adding the contact, we should be at a contact screen, where we
can view the details we just entered. Click on the schedule call button (this doesn't
schedule an automatic call; it schedules a reminder for the user to initiate a call). You
should be presented with a screen asking for details of the planned call. Fill in the subject
field with some text such as "test call”, and then enter the details of the contact we added
previously at the bottom of the screen where we see:

Add Invitees

First Neme: || tast Name: [

Click Search and find the contact's name below the Add Invitees box and click add,
which is on the right-hand side. You should then see the name added to the attendees list
along with "Administrator".

Scheduling

5:00 B:00 7:00 B:00 9:00
28 Administrator
E] Mike Mecha

When done, click Save, which adds the call to the database and it should appear on your
home screen within SugarCRM.

111

PUBLISHING

Asterisk@Home

Setting up tasks and meetings is a similar process and we also have the option of emailing
invites to the events to the specified attendees. Similar functionality to that provided by
Microsoft Outlook/Exchange, but with the added advantage of being much more focused
on customer relationship management rather than merely scheduling your own time. It is
extremely useful for groups of people working together on the same or similar accounts.

Administration of SugarCRM

Now that we have a basic overview of some of the functions SugarCRM provides, we can
have a look at how we administer the back end of the system. By clicking admin, we are
taken to the section of the system where we can make changes to the default settings,
manage user accounts, and even customize the forms on the other parts of the system. We
will briefly look at the basic administration settings and user management.

Configure Settings
Under this section we see a small area that contains email settings:

¢’ Administration: Configure system-wide settings

| save || Cancel |

Email Notification Options

"From" Name: * SugarCRM
"From" Address: * sugar@example.com

Mail Transfer Agent I sendmall j

In this section, we could change the name and address emails come from to reflect that
they are sent by our system:

"From" Name: Company CRM Administrator

"From" Address: administrator@ourcompany.com.

User Management

Here we can add, edit, and remove users of the SugarCRM system. Clicking Create User
shows a page where we can fill in various details of our system's users. Again this is a
wide-reaching page with a variety of options, not all of them necessary. If we click on the
existing Administrator account, we see a similar page showing all the attributes currently
set on the Administrator account.

112

PUBLISHING

Chapter 7

When viewing a user account, we can click on the edit button showing a similar screen
but this time the fields are editable and we can modify any attribute we feel necessary.
We can also delete the account, although it is recommended to disable accounts of users
that have left the system. This is so that any previous history assigned to them is still
linked to their account, and also in the event that the user comes back for any reason the
account can be recreated as before with minimal effort.

We can now add users that will be using the CRM system and modify their
attributes appropriately.

User Roles

As our system is being used, it may be necessary to segment usage of the CRM so that
users with varying responsibilities have different roles in the CRM and appropriate
permissions to complete their job functions. By clicking on Create Role we are presented
with a page where we can define a new role for use with the system. We need only
provide a name and then provide the modules users in this role are allowed to access.

For example a junior salesperson may not be allowed to create leads and appointments
but a more senior employee may. In this scenario, we would create two roles and define
access to modules accordingly.

113

PUBLISHING

Asterisk@Home

Summary

Asterisk as a system is extremely flexible as we are now well aware. However the
addition of a powerful tool such as SugarCRM makes it more than simply the
telecommunications provider for the organization. It becomes the focal center of all
communication, be it incoming, outgoing, or internal.

We can use Asterisk and this CRM combined to plan entire projects and monitor their
progress from start to finish. We can plan, make, and receive emails, calls, faxes, and
meetings. We can determine how long we spent on tasks towards a specific account or
project and we can see who was involved in all the conversations.

This paves the way for a variety of reports and analysis on how our business runs, which
just isn't easily possible without the integration and flexibility of our open-source
telecommunications system. This added functionality is exactly what the Asterisk system
is designed to do. It excels as the powerful back-end technology running behind an
integrated and feature-rich system.

The flip-side to this sort of integration is that all our eggs are in one basket—we have no
distribution of data. This can be a major problem to us as our Asterisk system expands.
The functionality of Asterisk@Home is available in Asterisk with the required add-ons
(AMP, FOP, etc.). With our own Asterisk build we can host some of these services on
different machines, therefore spreading the load and the data. As mentioned earlier,
Asterisk@Home is great for smaller installations as an excellent "plug and play"
telephone system. If we expect significant growth or are starting with an already medium
to large organization then we should consider building our Asterisk system from scratch.

114

PUBLISHING

Case Studies

Up to this point, we have worked through the setting up of a new phone system based on
Asterisk. Our system is developed with our specific needs in mind and has configurations
and features enabled to fit our particular purposes. Often we will find ourselves
wondering if we're making full use of the magic of Asterisk, and perhaps the best way to
find new tricks is to examine examples of working phone systems.

What follow in this chapter are typical examples of a few just such systems. Each section
will be devoted to one type of system. First, we will give a brief overview of the type of
customer involved before we mention some pointers to remember as we decide what they
need and how best to accomplish our task. Finally, we will go through the configuration
files, one at a time. Each configuration file will be annotated, and we will briefly discuss
why some of the choices are particularly good for the given scenario.

Small Office/Home Office

This is a common setup for Asterisk. In very small installations, Asterisk can be used to
give us the features we need from an expensive PBX system at small office prices. Using
Asterisk as a phone system for a home office gives the small business a big-business
sound and feel.

The Scenario

For our first example, we will join David in his home. An avid programmer and all-round
geek, he's decided he wants to have his very own phone system in his house. Because he is
too cheap to buy an answering machine, the system must have voicemail. He has recently
moved into an older home and only has one incoming line from the telephone company.

David has a new baby in the home and is very concerned about safety. He lives out in the
middle of nowhere, and loses power pretty regularly. He only has phones in the office,
kitchen, and master bedroom.

Finally, David would like to have Music on Hold for people who call in. Since he is
starting a new business, he wants to present a professional image to the callers he places
on hold for hours on end while he finishes his Pot Noodle.

PUBLISHING

Case Studies

The Discussion

First, Asterisk could be an appropriate choice here. Since David is a programmer, he will
be comfortable managing his own phone system. For home users who are not technically
minded, Asterisk may not be a good fit, unless they will be supported by a larger IT
department at their employer.

Secondly, to meet David's requirements, we will have to use POTS lines. Since he moved
into an older house, running cable will be very difficult. Also, since he lives in an area
prone to power failures, having the Asterisk server provide power to the telephones is a
good thing, as this will require only one UPS.

Giving David voicemail and Music on Hold will be very simple. In fact, the thing to
notice here, as with many SOHO configurations, is the lack of any other requests. This
means we will not need to configure SIP, IAX, H.323, parking, menus, or any other
advanced feature.

Since he has three handsets and one incoming line, we will be using a Digium TDM31B
card. This is a hardware TDM device that has three FXS ports and one FXO port. Also,
since he has such low requirements, i.e. all calls will be directly bridged on TDM
interfaces, he will be able to add Asterisk to his email server, which is already running
Linux on a Dell PowerEdge 400 SC.

The Configuration

Here are our configuration files for David. We should note that his server has been set up
as we have previously discussed, including mpg123. Also, his house has home-run
telephone wiring, meaning all telephone jacks terminate to the same closet.

Any files not listed here are left as default. If we did not install the default files, we
may do so at any time by changing to the /usr/src/asterisk directory and executing
make samples.

zaptel.conf
fxoks=1-3 ; 3 fxs modules, on channels 1-3
fxsks=4 ; 1 fxo module on channel 4

loadzone=us
defaultzone=us

We should remember that FXS modules use FXO signaling, and FXO modules use FXS
signaling. Also, we should always put our FXS modules on the lower port numbers
because of some reported inconsistencies when putting an FXO module on channel 1 of a
TDM card.

116

PUBLISHING

Chapter 8

zapata.conf

[trunkgroups]

[channels]

language=en

usecal lerid=yes ; Even though David is cheap, he subscribes to CID

hidecallerid=no

callwaiting=no ; but not call waiting...

usecallingpres=yes ; NOTE: this does not always work right, but when
; 1t does, it is quite useful

transfer=yes

cancal Iforward=yes

callreturn=yes

echocancel=yes

echocancelwhenbridged=no

echotraining=800 ; he had echo until he set the train time to 800

; FXO Interface

context=default ; all calls go to the "default" context
signalling=fxs_ks ; we use FXS signaling for our FXO device
group=1 ; we are placing the outgoing line in a group

channel=>4

; FXS Interfaces
context=outgoing ; All phones in the house may dial long distance
signalling=fxo_ks ; we use FXO signaling for FXS devices

group=2 ; we are putting all internal phones in a group

pickupgroup=2 ; this is so we can pick calls from other lines

callgroup=2 ; which may not be useful in this instance, but
; should not hurt anything

channel=>1-3 ; We select the channels

A few things we should notice: first, we usually don't want to enable echo cancellation
when calls are bridged. This can especially cause a problem with modem and fax
communications. Also, we can modify the echo training period to the best value for our
particular installation using a process of trial and error.

Another note is that we are not segregating the phones based on where they can call. It
may be tempting to put all of the incoming and outgoing extensions in a single context;
however, it is not wise to do so from a security standpoint. Thus, we have a blend of
security and simplicity.

musiconhold.conf

[classes]

default => quietmp3:/var/spool/asterisk/defaul tMOH,-z
Here we have our Music on Hold configuration. Notice that we only have one class,
which we called "default." Also, we have chosen to shuffle our files so that the system
doesn't always start with the same song. In small installations, it is very important to
remember this, as it is not very impressive if every time a customer calls, they are greeted
with exactly the same Music on Hold selections.

117

PUBLISHING

Case Studies

voicemail.conf

[general]

format=wav49|gsm|wav

serveremail=asterisk@davidscomputer.com

attach=yes ; voicemail messages will be attached to emails
skipms=3000

maxsilence=10

silencethreshold=128

maxlogins=6 ; David®s wife isn"t so good with passwords...

[zonemessages]
central=America/Chicago| "vm-received® Q "digits/at® IMp

[default]
1 => 1234,David
Gomillion,david@mydomain.tld,pager@mydomain.tld,tz=central

We have only one time zone, which is Central in the United States. We also have only
one voicemail box. Asterisk can do a lot more, but in this instance, no more is needed.

The configuration choices we made at the beginning of the file are pretty much standard,
except for the server's return email address. This should be set to something meaningful if
we are going to have users who will reply to these messages; however, in this instance,
this is just a fake (but informative) address because David simply won't try to reply to
these email notifications.

modules.conf

[modules]

autoload=yes

noload => pbx_gtkconsole.so ;don"t load stuff we won"t need
noload => pbx_kdeconsole.so
noload => chan_sip.so
noload => chan_iax.so
noload => chan_iax2.so
noload => chan_skinny.so
noload => chan_mgcp-so
noload => res_agi.so

noload => app_intercom.so
load => chan_modem.so

load => res_musiconhold.so

[global]
chan_modem.so=yes

In our modules. conf file, we have disabled all of the VolIP protocols that we will not be
using. This will help increase the security of our server, as this keeps ports closed that
have no need to be open. We also have firewalled all ports on the server except those
needed for other servers.

118

PUBLISHING

Chapter 8

extensions.conf

[general]
static=yes
writeprotect=no

[globals]
TRUNK=Zap/g1l
TRUNKMSD=1

[outgoing]

exten => 9_,1,Dial (${TRUNK}/S{EXTEN:${TRUNKMSD}}) ;if we dial 9,
; send to trunk

include => default

[default]
exten => s,1,Dial(Zap/g2,30) ; dial all extensions for 30

; seconds
exten => s,2,Voicemail(ul) ; send to VM if we don"t pick up
exten => s,3,Hangup
exten => s,102,Voicemail(bl) ; send to VM if we are busy
exten => s,103,Hangup
exten => 0,1,Dial(Zap/g2) ; if we dial 0, ring all phones
exten => 1,1,Dial(Zap/1) ; If we dial 1, ring the office
exten => 2,1,Dial(Zap/2) ; if we dial 2, ring the bedroom
exten => 3,1,Dial(Zap/3) ; 1T we dial 3, ring the kitchen
exten => 8,1,VoicemailMain(sl) ; press 8 to check messages

; without requiring password
exten => i,1,Goto(s,1) ; 1f we are In an invalid or timed-out
exten => t,1,Goto(s,1) ; state, go to s,1 in this context

This is our entire dialplan. We can see that it is very simple: each phone has an extension,
and there is an extension for all phones. Only incoming calls are going to go to voicemail
if a phone is busy or not answered.

We will notice that any number that is dialed with 9 as the first digit will automatically be
sent out the trunk. This is a very simple example of how a single pattern can accomplish
many tasks. Since we are not very concerned about securing the trunk from internal
extensions, it is alright to use this simple method of trunk access.

Conclusions

As we can see, Asterisk configurations can be very simple. Creating a PBX for a few
extensions is easy. Moreover, it illustrates some points that we will also see later in
configuring some other PBX systems.

119

PUBLISHING

Case Studies

Small Business

Small businesses make up a large portion of the IT market. These customers are unlike
any other: they need upscale features with limited resources. It is very common for small
businesses to require advanced features while needing to keep costs down. It's also
common for small businesses to want to appear larger and more established than they are
to increase customer confidence. Asterisk can be a great solution for small businesses as
it suits these needs well.

The Scenario

ACMEsoft is a software engineering firm with 40 employees. According to recent usage
studies by their telephone company, they usually use about 18 lines, with their peak last
month at 22 lines. They have a number of hosted extensions from the local telephone
company (often referred to as Centrex service), which they have been using for years. As
their five-year contract with the telephone company is up for renewal, they wish to
replace the expensive hosted service with an in-house solution.

They will be contracting with us to provide the deployment, ongoing support, and
maintenance of their new phone system.

ACMEsoft employs four first-tier support engineers, two second-tier support personnel,
and one third-tier support specialist. Each member of each tier has similar talents and can
handle the same calls.

They employ a receptionist, an operator, and an administrative assistant. There are 20
programmers, five testers, four project managers, and one person in the shipping department.

The Discussion

Asterisk is an appropriate choice for ACMEsoft. Asterisk provides all of the features
common to Centrex solutions, and then some. Since they have no illusions of having an
in-house tech to administer Asterisk, only our knowledge set is in question. Since we are
professionals who specialize in using Asterisk, we will be able to make it work according
to ACMEsoft's expectations.

Asterisk is a powerful alternative to the more expensive hosted solutions. When using
Centrex service, each extension must have an analog line. These lines are expensive to
install, move, and maintain.

With the current usage statistics, a Primary Rate ISDN (PRI) line makes the most sense.
The reason for this is that we will need less than 23 concurrent lines. PRI allows us to use
advanced signaling; also, echo is less likely with a PRI than with POTS lines. PRI is
often cheaper than having 23 separate POTS lines coming in to our server. Therefore, for
this installation, PRI makes the most sense.

120

PUBLISHING

Chapter 8

With Centrex service, each extension usually gets a unique phone number so that it may
be reached from the outside world. To have the same feature, we will be using Directed
Inward Dialing (DID) numbers. Usually purchased in blocks of 20, each number can be
mapped to an extension, group of extensions, or a service, such as conferencing or
voicemail. These numbers are generally inexpensive.

In this example, we will assume the phone company will be providing the full 10-digit
phone number for each phone call. This is a very common configuration, which should be
available from any phone company. We should always request the full 10 digits in case
we have the same last four digits for two telephone numbers coming into our system.

For our connection to the PSTN, we will be using Digium's T100P. This T1 card supports
ISDN signaling and integrates well with Asterisk. For our handsets, we will be using
Polycom's SoundPoint IP300s using SIP.

The support personnel will be organized into queues; each level of support will have
one queue. The operator will also have a queue, as he often receives multiple
calls simultaneously.

The Configuration

These are the configuration files for ACMEsoft's PBX. These files assume we have
already set up our server as previously discussed.

zaptel.conf

#incoming PRI 1
span=1,1,0,esf,b8zs
bchan=1-23

dchan=24

loadzone = us
defaultzone=us

We are using ESF framing and B8ZS coding. These are very common in the United
States for PRIs.

zapata.conf

switchtype=national

context=incoming

signalling=pri_cpe

group=1

channel => 1-23
Here we are setting channels 1 through 23 (the channels that take actual calls; channel 24
is for signaling) to be in group 1, and we are telling incoming calls to go to the context
called incoming in the dialplan.

121

PUBLISHING

Case Studies

musiconhold.conf

[classes]
default => quietmp3:/var/spool/asterisk/defaul tMOH, -z

Here we have a general Music on Hold instance, called default.

agents.conf

[agents]

ackcall=yes

wrapuptime=0

musiconhold => default
updatecdr=yes

;Tier 1

group=1

agent => 1111,0596,John Smith
agent => 1209,0522,William Krandal
agent => 0186,1129,Lindsey Cramer
agent => 0416,0106,Stephanie Lewis
;Tier 2

group=2

agent => 2345234,3489,Likes Longnum
agent => 5692,4989,Smitty Rodriguez
;Tier 3

group=3

agent => 1,1,Forgets Ownname
;Operator

group=4

agent =>0,1234,0perator Console

Notice that we can have variable agent IDs. This is usually not a very good idea, as
having consistent lengths for IDs is easier to support; however, often politics will dictate
whether the length can be standardized.

gueues.conf
[general]

[default]

;Tier 1 Support Queue
[Q110]

music=default
strategy=leastrecent
maxlen=0
context=default
member => Agent/@1

;Tier 2 Support Queue
[Q120]

music=default
strategy=ringall
maxlen=0
context=default
member => Agent/@2

122

PUBLISHING

Chapter 8

;Tier 3

[Q130]

music=default
strategy=leastrecent
maxlen=0
context=default
member => Agent/@3

;Operator Queue
[Q100]
music=default
strategy=ringall
maxlen=0
context=default
member => Agent/@4

Notice that each queue has its own section. We have configured each queue to have no
limit as to length. We will be using some nifty options in the extensions.conf file to
limit how long callers will be on hold, as setting the options upon entrance seems to be
more reliable than setting them in the queues.conf file.

sip.conf

[general]
context=default
port=5060
bindaddr=0.0.0.0
disallow=all
allow=ulaw

[101]

type=friend

context=local

callerid=ACMEsoft Operator<555-555-1234>
host=dynamic

secret=mypassl101l

dtmfmode=1nband

mai lbox=101

[102]

type=friend

context=longdistance
callerid=Sharon Stone<555-555-1235>
host=dynamic

secret=mypassl102

dtmfmode=inband

mai lbox=102

[111]

type=friend
context=default
callerid=John Smith<111>
host=dynamic
secret=mypasslll
dtmfmode=inband

mai lbox=111

123

PUBLISHING

Case Studies

As you can see, a clear pattern is emerging in this file. We simply copy and paste these
configurations to create all 40 extensions needed. Since we have all matching phones, we
know that the DTMF mode will be the same for all of them. Also, since we are providing
voicemail to all of our users, that will also be similar from user to user.

We should also take care to put our users in the proper context. Our first-level support
agent can only call internal extensions; our operator can dial local and toll-free numbers,
and our administrative assistant can dial long distance.

The rest of this example assumes we have created the rest of the necessary entries; for the
sake of brevity, they have been omitted here.

meetme.conf

[rooms]
conf =>
conf =>
conf =>
conf =>
conf =>

conf =>
conf =

conf =>
conf =>
conf =>

850
851
852
853
854
855
856
857
858
859

Here we have created 10 conference rooms, with no passwords assigned.

voicemail.conf

[general]

format=wav49|gsm|wav

serveremai l=asterisk@mydomain.com
attach=yes

maxmessage=180

minmessage=3

maxgreet=60

skipms=3000

maxsilence=10
silencethreshold=128

maxlogins=1

fromstring=The Greatest PBX IN THE WORLD!!!

[zonemessages]
eastern=America/New_York|"vm-received® Q "digits/at® IMp
central=America/Chicago] "vm-received” Q "digits/at™ Imp

[default]

100 => 100,0Operator Queue Mailbox, ,tz=central

101 => 123,0perators Mailbox, ,tz=central

102 => 674,Patty Smalley, ,tz=central

111 => 38594 ,John Smith, ,tz=eastern ;Support Department works by
; ETZ

112 => 65413,William Krandal, ,tz=eastern

113 => 654,Lindsey Cramer, ,tz=eastern

114 => 0106,Stephanie Lewis, ,tz=eastern

124

PUBLISHING

Chapter 8

As we can see, configuring voicemail is simple. The important thing to remember is
that whatever we set the name to determines whether an extension will match an
entry in the Directory. Also, the context in voicemail should always match the
context in extensions.conf.

extensions.conf

[general]

static=yes
writeprotect=no

#include
#include
#include
#include
#include

[globals]

macros.incl
incoming.incl
outgoing.incl
default.incl
dialext.incl

TRUNK=Zap/g1l

TRUNKMSD=1
This is our entire extensions.conf file. By using the #include feature, we are able to
make our configuration files much easier to read, and much easier to maintain. We should
remember to keep the filenames easy to read and logical. Since each of these files is
included into the extensions. conf file, they will not get separate sections in this chapter.

;macros.incl
;#included into extensions.conf
[macro-stdexten]

e

exten
exten

exten

exten
exten
exten
exten

exten

Standard extension macro:
${ARG1} - Extension (we could have used ${MACRO_EXTEN} here as

well)

${ARG2} - Device(s) to ring
xten => s,1,Dial (${ARG2},20)

; Ring the interface, 20 seconds
3 maximum

s,2,Goto(s-${DIALSTATUS},1) ; Jump based on status

IT unavailable, send to
voicemail

IT they press #, go to
Operator

s-NOANSWER, 1, Voicemai l (uU${ARG1})
s-NOANSWER, 2,Goto(default,0,1)

s-BUSY,1,Voicemail (b${ARG1}) ; If busy, send to voicemail
; with busy message
s-BUSY,2,Goto(default,0,1) ; If they press #, go to

Operator

s-CHANUNAVAILL,1,Voicemai | (U${ARG1})
s-CHANUNAVAIL,2,Goto(default,0,1)

s-.,1,Goto(s-NOANSWER, 1) ; Treat anything else as no
; answer

125

PUBLISHING

Case Studies

exten => a,1,VoicemailMain(${ARG1}) ; 1T they press *, send to
; VoicemailMain

[macro-novm]

exten => s,1,Dial (${ARG1},30) ;ring the interface for 30 seconds
exten => s,2,Goto(default,s, 1)

exten => s,102,Goto(default,s,1)

Notice that we have a macro to set up all of the extensions we will be creating. This will
save us a ton of work later on, as well as make our configuration files very readable.

;incoming.incl
;#included from extensions.conf
[incoming]
exten => 5555551234,1,Goto(default,100,1) ;Main number rings to
; Operators
exten => 5555552345,1,Goto(default,110,1) ;Direct number to Support
exten => 5551110001,1,Goto(default,111,1) ;Direct line to
; Extension 111
exten => 5551110002,1,Goto(default,112,1) ;Direct line to
; Extension 112
exten => 5551110003,1,Goto(default,113,1) ;Direct line to
; Extension 113

éxieﬁ => s,1,Goto(default,100,1);
exten => t,1,Goto(default,100,1);
exten => i,1,Goto(default,100,1);

Notice that we handle all incoming calls via this file. Here we define our DIDs and where
we want them to ring. We also make sure to create intelligent rules in case the DID
information is mangled by our phone company before Asterisk can decode it. In this case,
we are sending the calls to our Operator.

; outgoing.incl

;#included from extensions.conf

[local]

ignorepat => 9

exten => _9NXXXXXX,1,Goto(trunkdial ,${EXTEN},1)
exten => _91800XXXXXXX,1,Goto(trunkdial ,${EXTEN},1)
exten => _91866XXXXXXX,1,Goto(trunkdial ,${EXTEN}, 1)
exten => _91877XXXXXXX,1,Goto(trunkdial ,${EXTEN},1)
exten => _91888XXXXXXX,1l,Goto(trunkdial ,${EXTEN},1)
include => default

[lTongdistance]

ignorepad => 9

exten => _91INXXNXXXXXX,1l,Goto(trunkdial ,${EXTEN}, 1)
include => local

[trunkdial]

exten => _9._,1,Dial (${TRUNK}/${EXTEN:${TRUNKMSD}})

exten => _9.,2,Congestion(5)

exten => _9.,3,Hangup
Notice what we have done here: we created a general context called trunkdial, which
we use to dial any calls going over the trunk lines. Why is this helpful? If we were to add
a new trunk group, we could add only one line. If we were to use the standard method of
having each line above dial, we would have to add six lines for each new trunk group.

126

PUBLISHING

Chapter 8

This example assumes we will have no users placed directly in the trunkdial context,
such as in the sip.conf file. For security reasons, we must be careful that we do not ever
place a user explicitly in the trunkdial context.

;default.incl

;#included iIn extensions.conf
[default]

exten => s,1,Goto(default,100,1)
exten => t,1,Goto(default,100,1)
exten => i,1,Goto(default,100,1)

; Operator queue, Operator Console, and Receptionist Phone

exten => 100,1,Answer

exten => 100,2,Queue(Q100]|]11240) ; only allow 4 minutes in queue
exten => 100,3,Voicemail(ul00) ; then send to WM

exten => _10[12],1,Macro(stdexten,${EXTEN},SIP/${EXTEN})

;Support Tier 1

exten => 110,1,Answer

exten => 110,2,Queue(Q110]|]1240) ; allow 4 minutes in queue
exten => 110,3,Goto(default,100,1) ; then send to Operator
exten => _11[1-4],1,Macro(stdexten,${EXTEN},SIP/${EXTEN})

;Support Tier 2

exten => 120,1,Answer

exten => 120,2,Queue(Q120]]]1240) ; allow 4 minutes in queue
exten => 120,3,Goto(default,100,1) ; then send to Operator
exten => _12[12],1,Macro(stdexten,${EXTEN},SIP/${EXTEN})

;Support Tier 3

exten => 130,1,Answer

exten => 130,2,Queue(Q130]]]1240) ; allow 4 minutes in queue
exten => 130,3,Goto(default,100,1) ; then send to Operator
exten => 131,1,Macro(stdexten,${EXTEN}, SIP/${EXTEN})

;Programmers, extensions 200-219
exten => _2[01]X,1,Macro(stdexten,${EXTEN},SIP/${EXTEN})

;Testers, extensions 251-255
exten => _25[1-5],1,Macro(stdexten,${EXTEN},SIP/${EXTEN})

;Project Managers, exts 301-304
exten => _30[1-4],1,Macro(stdexten,${EXTEN},SIP/${EXTEN})

;Shipping Department, ext 191, doesn"t need voicemail
exten => 191,1,Macro(novm,SIP/${EXTEN})

exten => 800,1,Answer
exten => 800,2,VoicemailMain

exten => _85X,1,Answer
exten => _85X,2,MeetMe(${EXTEN})

exten => 888,1,Goto(dialext,s,1)

127

PUBLISHING

Case Studies

Notice that we are able to create 20 extensions for our programmers in a single line. This
is the power of Asterisk's pattern matching, coupled with the flexibility of macros. We
can use tricks like this one by grouping similar extensions together.

;dialext.incl

;#included from extensions.conf

[dialext]

include => default

exten => s,1,Answer

exten => s,2,DigitTimeout(5)

exten => s,3,ResponseTimeout(20)

exten => s,4,Background(pleaseenterextension) ; "Please enter the

; extension of the party you are calling.”

exten => 9,1,Directory(default) ; press 9 for the directory
exten => 9,2,Goto(dialext,9,1)

exten => 0,1,Goto(default,100,1) ; send to operator as a
; courtesy if they press 0

exten => i,1,Playback(privacy-incorrect)
exten => i,2,Goto(dialext,s,1)

exten => t,1,Goto(dialext,i,1)

This small context allows users to dial anybody in the company, and also to access the
corporate directory. The directory, which reads the voicemail .conf file, allows access
to any extension in the company. By so doing, a "backdoor" line can be established that
points directly to this extension, allowing us to no longer need direct phone numbers for
each extension.

Conclusions

Asterisk has proved itself again as a powerful solution for real-world problems. By taking
advantage of the feature set Asterisk provides, we are able to create a server that has the
features of a Centrex system, and then some. The savings ACMEsoft will experience are
very real and will pay for the system with a short ROI.

Hosted PBX

Asterisk is not limited to being able to service only one company. With a little finesse, we
can configure Asterisk to handle multiple companies without any needing to be aware of
the others' presence. Although our example will deal with multiple companies on one site,
there is no reason the same principles could not be applied over a high-speed data network.

128

PUBLISHING

Chapter 8

The Scenario

Al's Computer Depot was a very large computer retailer in the early 1990s, back when
computers were fun and profitable. Unfortunately, Al got a bit too used to very high
margins on computer sales, and so has moved out of the computer selling business. He
and his team have moved into consulting. As a consulting firm, 90% of the employees are
traveling at any time.

Al's wife operates a small boutique selling Asian knock-off wallets. Since most of the
offices are empty all of the time, Al decided to let her have an office to run her business
from. And with such a business, Sue needed a telephone line but it would be no good to
have the line answered by someone from Al's Computer Depot (the name wasn't changed
as Al didn't want to buy new stationary when he went into consulting).

After this experience, Al decided to sublease more offices, requiring the tenants to
purchase telephone service from him. And so, Al's phone system is configured to allow
multiple businesses on the same server.

We will be considering three separate businesses: Al's Computer Depot, Sue's
Collectibles, and AutoAuction Listings.

The Discussion

Asterisk is perfect for this scenario. The flexible feature set will allow enough features
for potential tenants, while being able to be scaled down for the smaller businesses who
only need one line, like Sue's Collectibles.

We will be using SIP hardphones and a PRI line for PSTN interconnection. This will give
us flexibility to change quickly when tenants come and go.

The Configuration

Once again assuming we have properly installed Asterisk, the following files will
configure our server for Al.

zaptel.conf
#incoming PRI 1
span=1,1,0,esf,b8zs
bchan=1-23
dchan=24
loadzone = us
defaultzone=us

Again, we use ESF framing and B8ZS coding, as they are very common for PRIs in the
United States.

129

PUBLISHING

Case Studies

zapata.conf

switchtype=national
context=incoming
signalling=pri_cpe
group=1

channel => 1-23

Here we are setting channels 1 through 23 (the channels that take actual calls; channel 24
is for signaling) to be in group 1, and we are telling incoming calls to go to the context
called incoming in the dialplan.

musiconhold.conf

[classes]
default => quietmp3:/var/spool/asterisk/defaul tMOH,-z

Here we have a general Music on Hold instance, called default.

sip.conf

[general]
context=default
port=5060
bindaddr=0.0.0.0
disallow=all
allow=ulaw

[al100]

type=friend

context=al-Id

callerid=Al Getrich<800-555-1234>
host=dynamic

secret=badpassword
dtmfmode=inband

mai lbox=100@al

accountcode=al

[suel]

type=friend

context=sue-Id

callerid=Sue Getrich<555-555-5555>
host=dynamic
secret=anotherbadpassword
dtmfmode=inband

mai lbox=1@sue

accountcode=sue

[aal00]

type=friend

context=aa-Id

callerid=Auto Auctions<555-777-1234>
host=dynamic

secret=1234

dtmfmode=inband

mai lbox=100@aa

accountcode=aa

130

PUBLISHING

Chapter 8

Here we see three of the many SIP extensions that are defined. Notice that two of the
users, namely aai100 and al100, both have mailboxes of 100, and both will be extension
100. Since they are in different contexts, though, this will not be a problem.

Also, we should be sure to put each of the SIP users into the correct account codes. By so
doing, we can correctly bill calls made to the party who made them. There are a whole
host of billing solutions available for Asterisk; however, we focus on what can be done
with the default setup here.

voicemail.conf

[general]

format=wav49|gsm|wav

serveremai l=asterisk@mydomain.com
attach=yes

maxmessage=180

minmessage=3

maxgreet=60

skipms=3000

maxsilence=10
silencethreshold=128

maxlogins=1

fromstring=The Greatest PBX IN THE WORLD!!!

[zonemessages]
central=America/Chicago] "vm-received” Q "digits/at™ Imp

[al]
100 => 100,Al Getrich, ,tz=central

[sue]
1 => 1,Sue Getrich, ,tz=central

[aa]
100 => 1234,Auto Auctions, ,tz=central

This is a sample of how the voicemai I .conf file will look, with one sample from each
company. As we can see, configuring voicemail is simple. The important thing to
remember is that whatever we set the name to determines when an extension will match an
entry in the directory. Also, the context in voicemail should always match the context in
extensions.conf. This allows each company to have its own directory, if it so chooses.

extensions.conf

[general]
static=yes
writeprotect=no

#include macros.incl
#include al.incl
#include sue.incl
#include aa.incl
#include outgoing.incl

131

PUBLISHING

Case Studies

[globals]

TRUNK=Zap/g1l
TRUNKMSD=1

This is our entire extensions.conf file. By using the #include feature, we are able to

make our configuration files much easier to read and maintain. We should remember to

keep the filenames easy to read and logical. Since each of these files is included into the
extensions.conf file, they are not given separate sections in this chapter.

;macros.incl i
;#included iInto extensions.conf
[macro-stdexten]

e

exten
exten

exten

exten
exten
exten
exten

exten

exten

xten => s,1,Dial (${ARG2},20)

Standard extension macro:
${ARG1} - Extension (we could have used ${MACRO_EXTEN} here as

well)

${ARG2} - Device(s) to ring

; Ring the interface, 20 seconds
> maximum

s,2,Goto(s-${DIALSTATUS},1) ; Jump based on status

s-NOANSWER, 1,Voicemai l (u${ARG1}); If unavailable, send to
voicemail

IT they press #, go to

Operator

S-NOANSWER, 2,Goto(default,0,1)

s-BUSY,1,Voicemail (b${ARG1}) If busy, send to
voicemail with busy
IT they press #, go to

Operator

s-BUSY,2,Goto(default,0,1)

s-CHANUNAVAIL ,1,Voicemai l (u${ARG1})
s-CHANUNAVAIL,2,Goto(default,0,1)

s-.,1,Goto(s-NOANSWER, 1) ; Treat anything else as
; nho answer

a,l,VoicemailMain(${ARG1}) ; If they press *, send to
; VoicemailMain

[macro-novm]

exten => s,1,Dial (${ARG1},30)

ring the interface for 30
seconds

exten => s,2,Goto(default,s,1)
exten => s,102,Goto(default,s,l)

We can actually reuse these macros from the previous example; this is why macros are so
powerful. By defining things generically enough, we are able to reuse the same
configuration in many different scenarios.

;al.incl
;#included from extensions.conf

[al]

exten

exten

132

=>

8005551234,1,Goto(al ,100,1) ;AL"s direct number

=> 100, 1,Macro(stdexten,100@al ,SIP/al100) ;AL"s extension

PUBLISHING

Chapter 8

Notice that we can handle incoming calls and internally dialed extensions. Here we
define our DIDs and where we want them to ring. We also define failover behavior in

case of bad information from our phone company. Finally, we define the extensions for

Al's own business directly in this file.

One somewhat interesting side effect of this method is that if we dial the full 10-digit
number from a telephone, it will route it internally, instead of hopping off to the PSTN

and then coming back in. Of course, if we dial a 9, then we will still use the trunk rules.

;sue.incl

;#included from extensions.conf

[sue]

exten => 5555555555,1,Goto(sue,1,1) ; Sue"s direct number

exten => 1,1,Macro(stdexten,100@sue,SIP/suel) ; Sue®s extension

;aa.incl

;$included from extensions.conf

[aal

exten => 8005551234,1,Goto(al,100,1) ; Only phone number for A A
exten => 100,1,Macro(stdexten,100@aa,SIP/al100) ; Only AA extension

Here we have the other two businesses. We have chosen to configure them much the
same way as we did for Al. Each business will be in its own configuration file.

;outgoing.incl

;#included from extensions.conf

[al-local]

ignorepat => 9

exten => _9NXXXXXX,1,Goto(trunkdial ,${EXTEN},1)
exten => 918OOXXXXXXX 1, Goto(trunkdlal ${EXTEN}, 1)
exten => ~_91866XXXXXXX,1,Goto(trunkdial ,${EXTEN},1)
exten => _91877XXXXXXX,1,Goto(trunkdial ,${EXTEN}, 1)
exten => ~_91888XXXXXXX,1,Goto(trunkdial ,${EXTEN},1)
include => al

[al-1d]

ignorepad => 9

exten => _9INXXNXXXXXX,1,Goto(trunkdial ,${EXTEN},1)
include => al-local

[sue-local]

ignorepat => 9

exten => _9NXXXXXX,1,Goto(trunkdial ,${EXTEN},1)
exten => 918OOXXXXXXX 1, Goto(trunkdlal ${EXTEN}, 1)
exten => ~_91866XXXXXXX,1,Goto(trunkdial ,${EXTEN},1)
exten => _91877XXXXXXX,1,Goto(trunkdial ,${EXTEN}, 1)
exten => ~_91888XXXXXXX,1,Goto(trunkdial ,${EXTEN},1)
include => sue

[sue=I1d]

ignorepad => 9

exten => _9INXXNXXXXXX,1,Goto(trunkdial ,${EXTEN},1)
include => sue-local

133

PUBLISHING

Case Studies

[aa-local]

ignorepat => 9

exten => _9NXXXXXX,1,Goto(trunkdial ,${EXTEN},1)
exten => _91800XXXXXXX,1,Goto(trunkdial ,${EXTEN},1)
exten => _91866XXXXXXX,1,Goto(trunkdial ,${EXTEN}, 1)
exten => _91877XXXXXXX,1,Goto(trunkdial ,${EXTEN},1)
exten => _91888XXXXXXX,1l,Goto(trunkdial ,${EXTEN},1)
include => aa

[aa-1d]

ignorepad => 9

exten => _9INXXNXXXXXX,1,Goto(trunkdial ,${EXTEN},1)
include => aa-local

[trunkdial]

exten => _9._,1,Dial (${TRUNK}/${EXTEN:${TRUNKMSD}})

exten => _9_,2,Congestion(5)

exten => _9.,3,Hangup
Here we used the same trunkdial context as in the previous example for exactly the
same reasons. However, with all these different outgoing contexts, the complexity of
adding extensions would simply keep increasing.

Each company has a unique set of outgoing contexts so that only its extensions are
included. This helps ensure the correct extension is reached when extensions exist in
more than one context, such as extension 100 existing in contexts aa and al.

Compared to our previous example, the system offers fewer features for our users: we do
not have conferences, we cannot get to the directory, and we must call our own extension
and press the * key to get to our voicemail. However, these features can be activated at
will, or even as customers pay to have them added.

Conclusions

Asterisk has again been used to fulfill a different need in a phone system. By taking
advantage of contexts, we have been able to create multiple virtual phone servers with
only one server, one PRI line, and one set of configuration files.

Summary

In looking at these case studies, | hope you have been able to spot common features in
what we are trying to implement in each different situation. We can learn from these
implementations and apply many of the same strategies when we encounter users with
similar needs.

134

PUBLISHING

Maintenance and Security

Now that we have an Asterisk server installed and running we should consider the
maintenance and security of the server. There are a number of aspects involved here and
we will cover each in turn. Since the Asterisk server is going to be the central hub of our
phone system, the importance of securing and maintaining it is obvious, as without it we
lose our primary means of communication.

This chapter also looks at scalability issues, which are important to keep Asterisk running at
high loads. Finally, the last section takes a look at how to get support from the community,
and how to stay abreast of Asterisk developments. Keeping up with what's going on in the
Asterisk world can be a very useful way to stay prepared for potential problems before they
happen, as well as providing a helping hand should things go wrong.

Backup and System Maintenance

One of the most important aspects of maintaining a system is the update or patch
management process. It's vital that we keep our system up to date in order to reduce bugs
and ensure that any security vulnerabilities in our software are fixed as soon as possible.
When updating our Asterisk server, there are three main areas to maintain:

e The Asterisk service itself

e The various components that Asterisk depends on (Zaptel, libpri, festival, etc.)
e The host OS and any supplementary tools installed (OpenSSH, mpg123, etc.)
When we discussed setting up the Asterisk server, we covered installing from the CVS

source repository, which is an easy way to keep up to date, as you can continually
download the latest version.

PUBLISHING

Maintenance and Security

If we were to manage all applications as source packages only, we would need to go
through the steps given in the installation chapter for each component as updates are
released. However, when we factor in the updates for the tools of the host operating
system and any other tools we use, this can become tedious and error prone quite quickly
as these extras aren't contained in the Asterisk CVS repository. It is at this point we
should consider a package management system to ensure we keep everything up to date
automatically, reducing our administrative burden. The options we have for this are
dependent on the Linux distribution we decided to use.

Examples are:

e APT: used by Debian (and ported to many other distributions such as Red
Hat). See http://www.debian.org/doc/manuals/apt-howto/
index.en._html.

e Portage: Gentoo. http://www.gentoo.org/doc/en/handbook/handbook-
x86 . xml?part=2&chap=1.

e URPMI: used by Mandrake. See http://www.urpmi .org.

e Yum used by YellowDog/CentOS. See http://1inux.duke.edu/
projects/yun/.

Each of these is documented on its respective site. In order to ensure our system
remains well maintained, we must become familiar with the package management tools
at our disposal.

Backing Up Configurations

In the installation chapter, we briefly touched on backups and mentioned making a copy
of the configuration files before editing them. This is good administrative practice and
will protect us from any mistakes we make in the configuration files. However, it will not
protect our configuration if the system were to be compromised or if we were to lose the
media containing the configuration. It also doesn't take into account any data the system
holds that we might lose.

Asterisk configurations can become quite involved over time and we invest a lot of time
in setting these up. Repeating this work would be far from desirable in the event of
system failure. For this reason we should keep off-line copies of the configuration files.

The backup method is unimportant; what is important is that we understand it and are sure
that it fits our need; in the end, the final choice will mostly be down to personal preference.
Above we have chosen some of the most common methods to provide practical examples;
we can choose any backup solution that suits us or fits with our business requirements as
long as we ensure that we do backup—configuration files, data, and logs. The locations
of these files are configurable and may change depending on our distribution. You can find
their locations in the Zetc/asterisk/asterisk.conf file:

136

PUBLISHING

Chapter 9

[global]

astetcdir => /etc/asterisk

astmoddir => /usr/lib/asterisk/modules
astvarlibdir => /var/lib/asterisk
astagidir => /usr/share/asterisk/agi-bin
astspooldir => /var/spool/asterisk
astrundir => /var/run/asterisk
astlogdir => /var/log/asterisk

A simple manual copy of the /etc/asterisk directory may seem to be enough to ensure
we don't lose these settings but we have to consider files outside the Asterisk directory
that the server directly relies on, such as Zetc/zaptel .conf and our network
configuration files. The locations of some of the files important to us can vary with
distribution, but invariably they are kept as a sub-folder of the /etc/ directory. This
means that as long as we ensure that this directory is copied from the server periodically
we can restore the configuration files in the event of a failure.

We should ensure this is done automatically at least once per week. There are a number
of options for doing so but the simplest and easiest to automate is an rsync copy to our
backup server, or if the Asterisk server has a tape drive we could use the tar utility.

Backup Schedule

Our backup schedule may have to be more frequent than once per week
depending on business and personnel requirements.

Below is a sample rsyncd.conf configuration file:

[asterisk_backup]
path = /home/adminuser/asterisk_backups
comment = Asterisk Backups
uid = nobody
gid = nobody
read only = no
list = no
auth users = username
secrets file = /etc/rsyncd/asterisk

The /etc/rsyncd/asterisk file would contain our username and password pair; this
and the /etc/rsyncd.conf file would be on the backup server, which we would also
install and run rsyncd on.

We could then run the following command on the Asterisk box to back up the configurations:

$ rsync --verbose --compress --progress --recursive --times --perms
--nodelete /etc/* backupserver:asterisk_backup

137

PUBLISHING

Maintenance and Security

This would copy everything from the Zetc/ directory on the Asterisk server to the
/home/adminuser/asterisk_backups directory on the backup server.

Added Security

If we install SSH on the backup server, we could perform the above over an
encrypted SSH tunnel, by altering the command as follows:

$ rsync --rsh=/usr/local/bin/ssh --verbose --compress —progress
--recursive --times --perms --nodelete /etc/*
backupserver:asterisk_backup

We could also back up to a tape drive attached to the Asterisk server by using the tar
utility, which requires no configuration files as it is completely command-line driven:

$ tar --verbose -j --create /etc/*

The -j option compresses using bzip2 for efficient storage.

If we want to use an archive file instead of a tape drive, we add the --file (or -F)
parameter:

$ tar --file=asterisk backup.tar.bz2 --verbose -j --create /etc/*
We could automate these processes by adding the relevant command lines to cron.
For example:

$ crontab -e
0 2 * * 0 tar --Tile=asterisk backup.tar.bz2 --verbose —j
--create /etc/*

This would back up the configuration files at 02:00 every Sunday morning. It may be
worth studying cron if we are unfamiliar with it to ensure we understand its capabilities.

Backing Up Voice Data

We would also want to ensure we had backups of the saved data that we have in our
spool directory. This is where our hold music and voicemail is located for example. We
would almost certainly want to restore this in the event of a system failure, especially
when we have referenced audio files in our configuration files and so they are required
for Asterisk to function properly. The default location of the spool directory is
/var/spool/asterisk, 0 we should add this to our backup commands above.

Using rsync:

$ rsync --verbose --compress --progress --recursive --times —perms
--nodelete /etc/* /var/spool/asterisk backupserver:asterisk_backup

Using tar:

$ tar --file=asterisk_backup.tar.bz2 --verbose -j --create /etc/*
/var/spool/asterisk

138

PUBLISHING

Chapter 9

This would ensure our backups contain all our configuration and voice data necessary for
a complete restoration of the Asterisk server.

Additional Considerations

We may also want to back up other data and log files if we have additional
applications installed with the Asterisk server, such as Webmin.

Backing Up Log Files
It is important to ensure that any logs we have are backed up too, and we can do this
exactly as above by adding /var/log/asterisk to the commands. It may not always be

necessary to keep log files; however, we may have to keep these if we have a data
retention policy or are under regulations that require log and data to be kept.

Policies

If we are under a regulation or policy such as Sarbanes-Oxley or HIPAA, then
we will have clearly defined rules for log retention and may have to ensure
compliance of the Asterisk backups.

Backup Scripts

In order to back up the system effectively it's important that we back up the system
incrementally so that we can go back to previous points in time e.g. before a disaster
happened or before a configuration change that caused problems. The scripts that
follow allow is to do so by keeping copies of our configurations and data on a backup
server, and running these daily means we can go back and restore any date's
configuration if necessary.

The following scripts allow us to backup our files to a back up server running an SSH
daemon. They can be used as is (with the obvious change to the backup_server
variable) or as a starting point for a backup system. The files are commented enough to
make them self-explanatory. They use a combination of tar and scp to archive the files
and copy them off the server. Alternatively, you could use rsync by following the
guidelines shown earlier.

139

PUBLISHING

Maintenance and Security

First, here is the backup.cron script:

140

#1/bin/bash

HHAHHHH AR AR AR
Backup script for asterisk Hit
HAHHHH AR AR A A AR
This script is designed to make
a copy of all important config
and data files, which will then

be copied to a backup server Hit
running an ssh daemon Hit
HHAHHHH AR AR AR
Usage: backup.cron, no Hit
arguments required. HH

HHHAHHHHHH AR

edit variable below to contain your

backup server user and hostname as

well as directory location
backup_server="username@backupserver:/path/to/backups"
date="date +%Y-%m-%d"

Remove old backups to keep from filling the disk with junk
rm /backup/*.tar.gz -f

Backup the /etc/ directory
tar cfz /backup/asterisk-configs-${date}.tar.gz /etc

Backup the voicemail directory
tar cfz /backup/asterisk-vm-${date}.tar.gz
/var/spool/asterisk/voicemail

Rotate the logs for Asterisk
/usr/sbin/asterisk -rx "logger rotate”

mv /var/log/asterisk/debug.0 /tmp/debug.${date}
mv /var/log/asterisk/messages.0 /tmp/messages.${date}
mv /var/log/asterisk/event_log.0 /tmp/event_log.${date}

Backup log files
tar cfz /backup/asterisk-astlogs-$date.tar.gz /tmp/*_${date}

Remove unnecessary files
rm -f /tmp/*.${date}

Copy all archives to our backup server.

scp -B /backup/*-configs-${date}.tar.gz $backup_server
scp -B /backup/*-vm-${date}.tar.gz $backup_server

scp -B /backup/asterisk-astlogs-* $backup_server

scp -B /backup/asterisk-phonecfg-* $backup_server

PUBLISHING

Chapter 9

Next, let's see monitor_mix.cron:

#1/bin/bash

HHHHHH
Shell script to handle phone monitoring Hit
Files. This script will be run at night

and maybe at lunch. 1t will use soxmix Hit
to mix the in and out components of the Hit
conversation, delete the iIn and out com- #Ht
ponents, and then use lame to encode the #Hit
mixed wav File into an MP3 H#Ht
HHHHHH
Usage: monitor_mix.cron, no arguments Hit
required Hit

HHAHHH R

edit variable below to contain your

backup server user and hostname as

well as directory location
backup_server="username@backupserver:/path/to/backups"
date="date +%Y-%m-%d"

Clear previous backup files prepare folder
structure for backup set.

rm /backup/monitor -rf

mkdir /backup/monitor

mkdir /backup/monitor/${date}

chmod -R 700 /backup/monitor

For each conversation in the monitor directory
soxmix the two parts of the conversation
together and convert to mp3.
cd /var/spool/asterisk/monitor
for i in "Is *~in.wav"”
do
basename="basename $i -in.wav"
echo $basename

soxmix "in'" and "out" files

soxmix $i $basename-out.wav $basename.wav
rm -F $i

rm -f $basename-out.wav

convert resulting wav to mp3

lame --resample 16 -m m -b 32 -h --cbr $basename.wav $basename.mp3

Remove unnecessary files
rm -F $i

rm -f $basename-out.wav

rm -f $basename.wav

done

Put newly created mp3s in local backup directory
mv *.mp3 /backup/monitor/${date}

Copy mp3s to our backup server running an sshd
scp -B -r /backup/monitor/* $backup_server

141

PUBLISHING

Maintenance and Security

We could also restart the Asterisk service nightly in order to resolve any hung channels;
this may not be possible if the system sees high usage during the night, but is useful in
situations where we have channels hanging often.

Finally, asterisk_restart.cron:

#1/bin/bash

/etc/init.d/asterisk stop
/etc/init.d/zaptel restart
/etc/init.d/asterisk start

Time Synchronization

As our Asterisk system retains logs of calls and also makes routing decisions based on
time, it is important to have the system clock synchronized. We can do this with Network
Time Protocol (NTP). This is very easy to use. Just install the ntpdate program, which
you will most likely find in your distribution's package management system (yum, urpmi,
apt, or whatever). Then run the script shown below. If we have a local time server (for
instance if we have other time-dependent services such as Kerberos authentication
installed), we should use that.

The timesync.cron NTP script:

#1/bin/bash
ntpdate pool.ntp.org # replace pool.ntp.org with local time server
/sbin/hwclock —systohc # sync the hardware clock

Adding It All to cron

The four files we have created can be added to our crontab to ensure they are run
periodically. We can do this by first running:

$ crontab —e

Then creating the following entries (replacing /path/to with the location of our scripts):

30 01 * * * /path/to/backup.cron
59 23 * * * /path/to/monitor_mix.cron
00 01 * * * /path/to/asterisk_restart.cron

00,15,30,45 * * * * /path/to/timesync.cron

This ensures that our backup.cron, monitor_mix.cron, and asterisk_restart.cron
scripts are run nightly and that our time is synchronized every 15 minutes.

As we are running these commands non-interactively, i.e. we are using scp in batch
mode, we must ensure that the scp command can authenticate with the backup server. To
do this we should use SSH keys instead of passwords for authentication by running the
following commands:
$ ssh-keygen -t dsa ; accept all defaults by pressing enter at each

; prompt

$ ssh username@backupserver "cat >> ~/.ssh/authorized_keys"
< ~/.ssh/id_dsa.pub ; enter password when prompted

142

PUBLISHING

Chapter 9

Rebuilding and Restoring the Asterisk Server

If the unthinkable happens and we lose our server due to hard disk failure or if we have to
rebuild because of a system compromise, we need to know exactly how to get the server
back online as fast as possible to minimize downtime.

There are a number of steps involved in this:

1. We rebuild the server, by following the instructions in the installation
chapter. We follow exactly the same process up to the point of configuration.
Since we have a backup of the configuration files, we can skip this part and
replace the files with our backups later.

2. We replace the configuration files. We identify the latest usable backup, from
which we extract the Zetc/ directory. We then replace the operating system's
configuration files we need and replace the /etc/asterisk directory. This
ensures we have our previous configuration.

#1/bin/bash
$ tar xjvf asterisk _backup.tar_bz2
$ cp -R etc/asterisk /etc/asterisk

We follow a similar process for any other configuration files we wish to restore.

3. Data and Logs. We follow the same process as in Step 2, but this time
restoring the /var/spool/asterisk and the /var/log/asterisk directories
to their original locations as required, as well as restoring any other areas of
the system we have backed up.

4. Permissions. The last thing we need to ensure is that Asterisk can read and
write to the files necessary to function.

At this point we are able to restart the Asterisk server and verify that the system works
properly by testing that we can make and receive calls and checking that all features of
the system are functioning as they were previously. We could also ensure that no errors
appear, after which it can be reintroduced back to its production environment.

Disaster Recovery Plan (DRP)

If during installation we document as much as possible and create a valid DRP, we will
be able to get our Asterisk server back online with minimal disruption and effort. Since
Asterisk is most likely an essential line of communication to partners and customers,
downtime is an extremely important aspect to consider and creating a DRP should be
addressed long before any disaster occurs.

Even something simple such as logging the installation process and documenting how
to restore from backups is enough for at least a basic DRP, although it is recommended
that we go further and create a full plan for not only the Asterisk server but also all
other mission-critical services. We could also possibly have a layer of fault tolerance
built into the system.

143

PUBLISHING

Maintenance and Security

Our plan must take into account at least the following:

¢ Notification of any outage or data loss

e Times when outage of the Asterisk service would be most detrimental to the
organization

o Responsibility for getting the service restored

e Estimated time scale for restoration of service

e Location of backups and other necessary files

e Vendor support contact details

e Detailed restoration instructions, which would include:

0 Restoring the service

0 Restoring all data

o0 Restoring all configurations

0 Re-implementing backup procedures

Asterisk Server Security

Before we cover external security and before we think of putting the Asterisk server onto
our production network, we must consider the internal security of the system to ensure
that it fits with our security policy and meets good security practice at least.

Internal host security can be achieved in a variety of ways and there are many
applications and tools that we can use to aid us in this. We will not discuss all of the tools
and add-ons we can use for generic system security, but we will, however, cover basic
operating system hardening with Asterisk in mind, as well as further steps we can take to
ensure that the Asterisk system is running as securely as possible.

It is also important to consider the physical security of the Asterisk system. We may want
to have it under lock and key along with our other important infrastructure devices.

Internal Access Control

One of the most important and most overlooked aspects of host-level security is physical
security. Our Asterisk server is a communication channel and most likely carries some
confidential information. Be sure to have it as segmented from other non-essential non-
confidential systems as is reasonably possible.

144

PUBLISHING

Chapter 9

In any multi-user system, internal discretionary access control lists (DACLS) are essential
for security and Linux as an OS has Unix foundations for these control lists. There are a
variety of permissions that go far beyond read, write, and execute. However, focusing on
these is enough for our purposes and will help us maintain a secure system. As a rule we
would have no one but administrators accessing the Asterisk server, because our users
operate the system transparently from their telephony devices—either a handset or a
software telephone. No direct access to the system is usually required. This is assuming
that our Asterisk system is installed on a machine on its own that provides no other
services, which is not always the case but is highly recommended.

Installing the Asterisk service on a dedicated machine offers the following benefits:

e Resources are dedicated to Asterisk and are therefore easier to monitor:

0 We know if Asterisk requires extra resources.
o0 Badly performing services don't affect Asterisk.

e The attack surface of the machine is reduced:

0 There are fewer avenues for remote attack if the Asterisk service

is the only way in.
e Maintenance of the system is easier:

0 We don't have to check Asterisk updates for compatibility with
other services and vice-versa.

0 A system’s reliability and uptime are inversely proportional to
the number of services and users it provides for.

0 There won't be downtime of the Asterisk service while unrelated
services or components are updated, modified, or removed.

We should ensure that the Asterisk service has access to the directories it requires to
perform its function. The permissions mentioned here are not the default but create a
more secure setup, and we should test that our Asterisk service functions properly after
making these changes. The default permissions on the directories listed are usually 755
and for the files 530. The directory locations listed below are the default directories and
permissions for an Asterisk install on Debian; consult your asterisk.conf file to
confirm their exact locations on your distribution.

The key directories are:
letc/asterisk

The configuration files for Asterisk are here. The Asterisk service requires read access to
this directory so that it can read its configuration as it loads up and prepares itself for use.
It won't need write access, as we will modify these files outside Asterisk and let Asterisk
read them as it needs them.

145

PUBLISHING

Maintenance and Security

fusr/lib/asterisk/modules

Asterisk has a variety of add-ons and different functionality provided by modules, which
are shared libraries that Asterisk can load as needed. They are stored in this directory, and
read access is all that's required. We don't require write or execute access as these modules
aren't executed directly but loaded by an already running program (the Asterisk binary).
Ivar/lib/asterisk

This folder contains required files such as public keys for services. Read access is required
so that Asterisk can read and present these keys to service providers. Write access is not
required as when new keys are added or keys change we would modify them manually.
/usr/share/asterisk/

This contains common files such as sounds. Again only read access required so that
Asterisk can load and play the sounds when necessary.

Ivar/spool/asterisk

This is the spool directory for storage of voicemail messages and other data. Here
read/write access is required. Asterisk stores this data in real time and therefore needs to
be constantly writing to this directory. We wouldn't manually edit anything here usually,
although we may occasionally delete old data.

Ivar/run/asterisk

Asterisk stores the PID of the currently running service here, and so it requires
read/write access.

Ivar/log/asterisk

Asterisk keeps a variety of log files here and requires read/write access to continually log
information and errors relating to the Asterisk service.

The following short script will set the permissions outlined above:

#1/bin/bash
Sets minimum permissions required for Asterisk"s key directories
Modify directory locations based on your /etc/asterisk.conf file

Make files root owned and asterisk grouped so that a compromise of
the asterisk user doesn"t allow write access to the config files

chown -R root:asterisk /etc/asterisk /usr/lib/asterisk/
/usr/share/asterisk/ var/spool/asterisk /var/run/asterisk
/var/log/asterisk

Give owner (root) r/w/x and give group (asterisk) r/x

chmod 750 /etc/asterisk Zusr/lib/asterisk/ /usr/share/asterisk/
/var/spool/asterisk /var/run/asterisk /var/log/asterisk

#Additional write access for asterisk group on necessary directories

chmod 770 /var/spool/asterisk /var/run/asterisk /var/log/asterisk

146

PUBLISHING

Chapter 9

If you have further Asterisk add-ons installed, the permissions of those files and
directories will also likely require modification to increase security.

Host Security Hardening for Asterisk

When we have our basic DACLSs in order, we can consider a number of other methods for
keeping the Asterisk system secure.

There are several tools that can be installed and used to improve security on Asterisk, and
describing the options for many of them would take up entire bookshelves of their own.
Here, we will discuss some of the simpler tools for keeping you informed on how secure
your system is.

Integrity Checker

We could install Tripwire or another file integrity checker to monitor the checksums
(hash values calculated from a file's contents) to ensure that the contents of a file haven't
changed. This helps by informing us whenever a file changes; more specifically it focuses
on binary files. So if an attacker succeeded in altering the Asterisk binary or one of the
modules you would know about it. You can also monitor other operating system files
(netstat, ps, top, etc.) to ensure that they haven't been tampered with. The security
offered in this is knowing which things have changed without your approval in the event
of a system compromise.

Checksums

A checksum is a calculated by running a file's binary contents through a known
algorithm, giving a constant value as long as the file contents do not change (the
file name has no relevance on the sum). This is used by tools such as Tripwire to
determine if a file has changed.

Root-Kit Detection

Root-Kits are tools installed by attackers in order to gain control of the system. They
modify binary files, change kernel system calls and use a variety of other evasion
techniques such as covert communication channels. This all is in aid of keeping the
attacker hidden so that we don't know they have compromised us, leaving them free to
plunder the system and use our resources as they see fit. A root kit detection tool is useful
as it helps us find these root-kits and quite often helps remove them. The two most
notable tools are rkhunter and chkrootkit.

e http://www.rootkit.nl/—rkhunter
e http://www.chkrootkit.org/—chkrootkit

147

PUBLISHING

Maintenance and Security

Automated Hardening

We can also use a tool such as Bastille, which will help us harden areas of the system
outside of Asterisk. We can implement a host-based firewall and modify other system
settings to increase security. Bastille has a wizard-based interface, which asks a series of
questions of the user and then creates and applies a security policy based on the given
answers. It requires very little knowledge of the underlying system and is a generous
boost to the overall security of the Asterisk host.

There is a plethora of other tools to choose from; however, these are very common and
very easy to use and are almost essential to a secure system. Installing and using these at
a minimum provides the knowledge of what's going on within our system, which is an
important part of knowing how secure we are.

Role Based Access Control (RBAC)

It's long been known that the traditional DACL, which is prevalent in many OSs including
Windows and Linux BSD as well as other Unix-based systems is not the only way nor the
best way to separate system access. RBAC is not an entirely new idea, and it has been
around for a long time but doesn't see much usage due to being quite difficult to implement.

Asterisk is a very complicated system, which performs a variety of functions, so it can be
very difficult to create a workable access control list for access to system resources.
RBAC works by not having a single root or administrative user, but instead splitting all
tasks to only those users in the system that require them.

RBAC can be provided on Linux by using RSBAC (Rule Set Based Access Control)
found at http://www.rsbac.org. You can use Adamantix, which is a distribution that has
this already fully implemented, and there are configurations of the system available

to set up Asterisk.

e http://www.adamantix.org/—Adamantix

SELinux

SELinux is a patch for the Linux kernel produced by the NSA for their purposes,
and it is described as experimental. It is, however, used on a variety of production
networks as an implementation of the Mandatory Access Control theory.

The good news for Asterisk administrators, however, is that there is a pre-written script for
SELinux downloadable from http://www.coker.com.au/selinux/ if you use Debian.
The policy is also available for other distributions such as Gentoo, where you will find it
within Portage.

148

PUBLISHING

Chapter 9

Network Security for Asterisk

As many of the protocols Asterisk supports are used over a TCP/IP network, we need an
understanding of how to control and firewall these correctly to ensure we only let the
necessary traffic pass through.

Our firewall will most likely be on a box separate from our Asterisk installation and
placed at the network perimeter (we may also have a host-based firewall to which
different rules may apply). In order to define the required rules, I won't detail how to
configure a specific firewall product, but provide the details necessary to configure any
device we have protecting our Asterisk installation.

These rules would apply to any device, be it iptables on a Linux machine, a commercial
firewall such as Microsoft ISA server or checkpoint, PIX, etc. The product in use isn't the
main issue, the protocol rules that are required are. We can then take these generic rules
and apply them to any firewall device we decide to install.

Firewalling the Asterisk Protocols

When it comes to security, firewalls have traditionally been the most important
mechanism for protecting internal company assets. For your Asterisk implementation and
more specifically the VoIP elements of this system, this is an important consideration.

VolP protocols are among the most complex in common use and require a great deal of
forethought before we can go ahead and deploy Asterisk on our production network. We
must consider which solutions we will use and which providers can supply them for us.
In order to ensure the network is securely set up, we should have a thorough
understanding of the protocols that we'll use so that we can firewall effectively.

It is often difficult to firewall VoIP protocols and there are many extensive
documents detailing various scenarios, so here we will discuss the basic needs of a
protocol for firewalling.

Probably the two most common protocols used by VoIP communications today are SIP and
H.323. At the time of writing, SIP is growing in popularity, although H.323 is the most
widespread in production use. The choice of protocols used for our VolP communications
depends entirely on which our vendor supports and which our contacts use.

We will cover SIP, H.323, and IAX here. We have covered these protocols from a
technical perspective in previous chapters and we will now see how to firewall these
effectively and why 1AX is much easier to maintain from a network-control perspective.

149

PUBLISHING

Maintenance and Security

SIP (Session Initiation Protocol)

There are now a variety of firewalls that have SIP support built in. All the rules required
to allow the protocol through the device are available and all that is needed is for the
relevant switch to be flicked. If we have a firewall like this (examples are borderware and
ISA server), then our job is done. If, however, we have to define our own firewall rules, a
little more work will be required. If we have a traditional firewall, which is a border
control mechanism for two networks (usually the LAN and the Internet), then it is
relatively straightforward.

We will require:

e Incoming connections on port 5090 (UDP and TCP) to the Asterisk machine
in order to receive SIP calls.

e Qutgoing connections on port 5090 (UDP and TCP) from the Asterisk server
in order to make SIP calls.

If we have Network Address Translation (NAT) between our Asterisk server and the
clients accessing it, then things get a little more complicated. In order to get such a setup
working, it is suggested that we get a SIP Proxy that supports NAT, which will allow
Asterisk to use SIP without difficulty.

The reasoning behind this is that NAT is a hack that was created in order to increase the
lifetime of the IPv4 address space. NAT works by taking the internal address (one that
isn't Internet routable) and modifying packets sent out so that they use one of the NAT
gateway's external addresses. The NAT gateway then takes the returning packets
(addressed to it) and rewrites them for the original client based on information held in a
lookup table. This works well for most single socket applications (a socket being a pair of
IP addresses and ports).

In SIP's case this will not work as well as SIP requires a distinct address for the SIP client
and when we use NAT that is obviously not the case, as multiple clients use the same
address. The Internet Engineering Task Force (IETF, www. ietf.org) maintains the
Internet drafts that detail exactly how to get SIP working through a NAT device. The best
advice, however, is for us to use a SIP Proxy or attempt to route our SIP service through a
router without NAT, that is, to basically give Asterisk one of our publicly accessible IPs.
Depending on our placement of the Asterisk server this may be a viable solution. With
IAX we can link multiple Asterisk servers so this gives us added options when it comes
to server placement.

H.323

H.323 has a similar problem to SIP as it is also designed to require distinct IP addresses
and the same advice applies: if we can have the H.323 server on a public IP then it may
be easier to maintain, as long as we firewall it effectively. If we have control of both ends
of the communication, we can set up a VPN between the two sites, which solves this
problem and ensures end-to-end encryption.

150

PUBLISHING

Chapter 9

To firewall H.323, we need to permit incoming and outbound connections on ports 1720
TCP and UDP ports 5000-5014.

IAX

IAX is a lot more straightforward than either H.323 or SIP as it was designed with the
limits imposed by NAT in mind. You can easily allow this traffic through your firewall
NAT with minimal fuss.

IAX uses port 4569 UDP outbound and inbound for communication. The old IAX
protocol, mentioned in an earlier chapter and succeeded by the current IAX (IAX2), used
5036 UDP.

IAX is also more powerful than either H.323 or SIP and has several features that make
VolP administration and use much easier. For example, it has enhanced signaling
capabilities and separates signaling and data more effectively. Also as IAX is not a
standard and therefore has no standards body monitoring the decision process,
modifications can be made more easily.

RTP—The Real-Time Transport Protocol

RTP is the protocol often used to carry the audio data in a VVolIP conversation; it is a
standard developed by the IETF (Internet Engineering Task Force). It can also be used to
carry video data and is designed specifically to handle this sort of real-time data. It
attempts to guarantee that the data will be transmitted and received in a short period of
time. Obviously latency in voice conversations can be problem, so RTP avoids this
latency as much as possible and concentrates on timely delivery of data.

To allow RTP to function, we would have to allow the following ports inbound and
outbound from our Asterisk server: 10000 to 20000 UDP

Controlling Administration of Asterisk

As we have set up Asterisk to access files owned by the root user and Asterisk group, this
means that the Asterisk service can read and write only to the files it requires. We,
however, may have to perform additional maintenance tasks such as adding extensions,
creating new voicemail boxes and so on.

As Asterisk configuration is managed by modifying flat files, we manage this
configuration by logging on to the server with an interactive session, at the local console
or remotely. To follow best practice, we wouldn't login directly as the root user, but more
likely as the Asterisk user. If we did need to edit any files the Asterisk user doesn't have
privileges for, then we would switch user to root using the su command:

$ su -
Password:[root password]

151

PUBLISHING

Maintenance and Security

We could also implement Sudo and give access to this to our Asterisk user account.
Either way would log in as root indirectly. To ensure that no one else can log in as root
across the network, we should configure our remote access mechanism to disallow root
logins. The most common remote access method for managing an asterisk server would
be SSH and the most common implementation OpenSSH http://www.openssh.com/,
which can be configured to prevent root login by editing the relevant directive in the
configuration files:

$ cat >> "PermitRootLogin No™ >> /etc/ssh/sshd_config

We could also further secure our remote access by using the internal firewall (set up
earlier by Bastille) to allow access only from the IP address of our administrative team's
IP addresses. This would prevent external attackers and internal users from making
unauthorized connections to the Asterisk server.

Sudo

Sudo allows us to give restricted administrator access to selected users, but be
warned that it is quite easy to misconfigure and give away more access than
you intend.

For example, giving someone Sudo access to vim gives them the ability to write
to all files as root and to execute a root shell from within vim. Most likely
not desirable!

http://www.courtesan.com/sudo/

Asterisk Scalability

As the Asterisk server is most likely highly critical to business, we want to ensure that
restoring from backups rarely happens and in the event of losing a machine when an
administrator isn't available, we have some sort of fail-over system in place. To achieve
this, we apply redundancy and load-balancing techniques to ensure that our infrastructure
has the resources to handle the data it needs to process.

In the event of a component failing, we would like to ensure that we don't lose services.
Ideally, the users of the system should never know there was any failure and the
administrator can get the failed system back online or replaced at the next convenient
moment. This sort of forward planning is essential for maintaining a service that will be
used as extensively as Asterisk often is.

Take the example of the 24-hour call center. If we have a business that relies on the
telephony system in order to generate revenue, then the loss of that service is a loss of
revenue. Being a 24-hour service there may not always be an administrator on site—there
may be periods where there is only "on call” cover. It would be a waste of resources to
have all the users idle while they wait on an administrator possibly being wakened and
then ferried to the site in order to get the system back up and running.

152

PUBLISHING

Chapter 9

As you can appreciate, a single point of failure is not only undesirable but can also have a
severe negative impact on the profitability of the business. There is also the chance that if
our usage of the Asterisk system outgrows current resources, the Asterisk machine has to
be taken offline while it is upgraded. We could avert this by having scalability built into
our design from the outset to ensure that the system can grow with business demand.

As Asterisk can't be installed onto a cluster, we require load balancing and scalability that
can be implemented without the use of clusters, which isn't as hard as it might seem.

Load Balancing with DNS

One of the most common ways to load-balance a system is to use DNS, the Domain
Naming System. This has the ability to "round robin" replies to queries in order to spread
load between different machines.

One of the largest DNS load balancing systems that we have all most likely used is the
Google search engine.

$ dig google.com +short
216.239.37.99
216.239.57.99
216.239.39.99

$ dig google.com +short
216.239.57.99
216.239.39.99
216.239.37.99

$ dig google.com +short
216.239.39.99
216.239.37.99
216.239.57.99

As we can see, each time the command to look up the IP of the Google server is run it
returns a different IP as the first IP, so that clients accessing it are spread between all of
the IPs in the pool and no single machine gets overloaded. You can also add addresses to
the pool and remove them without affecting the client, which means this system will
scale well to allow many users to access what appears to be just one service.

The advantage of using round robin DNS is that the server hardware behind the service
has no direct bearing on how the system can be scaled, as we have the option of adding
and removing servers. For instance, were we to suddenly grow we could add in more
servers or replace/upgrade existing servers leading to very simple scalability. There is
also some redundancy inherent in this system as if your client can't contact the first server
it will then attempt to contact the second server. This means that the loss of a server
doesn't bring the entire system to a halt, it merely slows it down slightly.

153

PUBLISHING

Maintenance and Security

Caching

Since clients cache the IPs they get from DNS, when they find a working IP, the
slow down incurred will be negligible. However, it is highly recommended to
remove problematic machines or addresses from the pool.

The example we look at here uses A records; however, it is increasingly common to see
round-robin implementations for SRV records. SRV records are used to locate a service
within a domain. For example in Microsoft's Active Directory implementation, SRV
records are used to locate domain controllers and in our Asterisk setup we would use
them to locate our routing service providers. The functionality of round robin doesn't
differ for the record you request, however—you still create a pool of IPs in your DNS
implementation. The two most commonly used implementations of DNS, Microsoft
DNS and BIND (versions above 4.9.7), support SRV records and support round-robin
SRV records.

For example to set up multiple SRV records for our SIP implementation, we would add
the following to our DNS zone:

sipa IN A 10.1.1.1
sipb IN A 10.1.1.2
sipc IN A 10.1.1.3
sip IN CNAME sipa.example.com
IN CNAME sipb.example.com
IN CNAME sipc.example.com
sip. udp.example.com. IN SRV 20 0 5060

sip.example.com.

This sets up three SIP servers for us (sipa, sipb, and sipc) and one _sip._udp SRV
record. Whenever the SRV record is requested, one of these three SIP servers will
be returned.

Support Channels for Asterisk

As an open-source project, we would expect Asterisk to have at least some basic
community support that we could rely on. Asterisk does have this and it has quite a bit
more as well. It has mailing lists, forums, and IRC as well as official support from
Digium. We don't always require commercial support but if running Asterisk is not our
core responsibility or if we have other constraints, having paid technical support on hand
can be a resource we would welcome.

154

PUBLISHING

Chapter 9

Mailing Lists
There are a few mailing lists available for unofficial Asterisk support, by far the most
active being provided by Digium itself. They are frequented by Digium staff as well as

Asterisk users and are probably the best source of information when it comes to quick
opinions or support from the community. They are found at the following URL.:

http://lists._digium.com/mailman/listinfo
The USERS mailing list is the best choice for support issues.

There is also the VOIPSEC mailing list provided by www.voipsa.org, which isn't
Asterisk-centric as its main focus is VoIP security on a wider scale. However as Asterisk
is one of the most common VolIP solutions, it is a topic of frequent discussion on the list
and topics such as firewalling protocols or encrypted communication are directly relevant
to anyone responsible for the security of an Asterisk installation.

We may not decide to use these mailing lists as a support mechanism; however, it is
worth having a "lurk" and reading through them at least, to give an insight into how other
people are using Asterisk and the problems and issues they come across. Such
experiences are invaluable in ensuring we do not repeat others' mistakes and will help in
increasing our knowledge of Asterisk and associated technologies. The VOIPSEC list for
instance has become the focal point of VoIP security and is often the first outlet for
information that has an impact on the security of a VolP implementation.

Forums

You can also obtain some support from the Digium forums, which can be found at
http://forums.digium.com/. However, they aren't as busy as the other support
available, the mailing lists and IRC being most popular.

IRC (Internet Relay Chat)

Asterisk has a lively community support mechanism provided by its IRC channel. This
can be found on the Freenode network, which is a network that comprises almost entirely
support channels for free and open source software.

To access this, download a suitable IRC client. mIRC, X-Chat, irssi, and chatzilla are
commonly used clients, and most have the address for the Freenode (irc. freenode.net)
servers in their default configuration. Once connected to Freenode, join #asterisk. This
channel is much like the Digium mailing list, in that it focuses on discussion of the use
and administration of Asterisk. It is also frequented by the same people that use the
mailing lists: developers, administrators, and users.

155

PUBLISHING

Maintenance and Security

IRC becomes a valid support mechanism when we need quick short answers to our
problems or a quick sanity check on something we intend to do. It is often difficult to
solve complex problems on IRC especially those that require long detailed explanations
or which extend over large portions of our configuration files. It's often easier to explain
such matters in an email to a list. However IRC is good for quick replies and for question
and answer sessions, so it shouldn't be overlooked.

Digium

Digium provides a variety of services relating to the installation and running of Asterisk,
from email and telephone support to on-site support contracts. We should evaluate the
need and benefit of this as we decide which kind of support we need. For example if we
have a full-time Asterisk administrator or team, we probably wouldn't require much
support: maybe email support for occasional troubles, but the mailing lists could possibly
provide enough.

If, however, we are employed as a single administrator in an SME we would benefit from
having official support mechanisms on hand, although in reality the spread of support is
usually the other way around, with SMEs winging it and larger companies having too much
support. We also have to consider cost; unofficial community support will obviously be
cheaper than paid commercial support. We should evaluate our needs carefully and ensure
that we have the necessary support in place to maintain our Asterisk system.

Summary

The phone system of any modern business is something that, if it works well, should be
almost invisible to its users. We want them to take it for granted, and to use its features
without thinking. It's inevitable and even desirable that our users should come to depend
on the services the system offers. Naturally therefore, we want to minimize any
disruption to the system, and to make sure that, in the event of a failure, normal service
can be resumed as smoothly and quickly as possible.

In this chapter, we've looked at how to be prepared for such an eventuality, by
performing regular and systematic backups. We also looked at making a Disaster
Recovery Plan, which can help to minimize the time taken to get the system back online.

Of course, the best way to minimize disruption from service outages is to prevent them
happening in the first place. To this end, we have looked at how to make Asterisk more
robust and how to harden it against attack.

Not all failures are the result of malicious activity, however, and we've also covered a
few issues that you should consider in order to make Asterisk scale well. Finally, the
community support channels are invaluable in keeping your Asterisk system well
maintained and running efficiently, as well as providing help should you ever get stuck.
The last section of this chapter was devoted to coverage of these various channels.

156

PUBLISHING

A

AddQueueMember application, 80
agents
agents.conf, 81
defining in queues.conf, 81
scenario call center, 81
types, 81
agents.conf, 81
AMP
about, 101
configuration options, 104
Flash operator configuration files, 106
Flash operator panel, 105
FOP, 105
maintenance options, 103
announce variable, queues.conf, 64
announce-frequency variable, queues.conf, 65
announce-holdtime variable, queues.conf, 65
Answer action, 72
Asterisk. See also PBX
about, 5
agent settings, 81
as IVR, interactive voice response, 8
as PBX, private branch exchange, 5-8
as voicemail system, 8
as VolIP, voice over IP system, 9
Asterisk management portal, 101
backup, 135
cdr_csv module, 92
Comedian Mail, voicemail program, 61
conference rooms, 66
configuration files, 36
configuring, 43
considerations, 12
deployment, planning, 17
directories, 145
extension length, choosing, 29
limitations, 11
maintenance, 135
MP3, streaming files to handset, 63
platform dependency, 12
protocols, supported, 21

Index

queues, 64

reload, 40

restart, 40

sample configuration files, 36

scalability, 152

security, 144

session initiation protocol support, 11

SIP support, 11

starting, 39

support, 154

system maintenance, 135

voicemail, 61
Asterisk deployment

extension length, choosing, 29

hardware requirements, 28

planning, 17

terminal devices, choosing, 25-28

terminal devices, types, 21
Asterisk installation

libpri, 35

prerequisite packages, 33

procedure, 36

source files, 34

Zaptel, 35
Asterisk management portal. See AMP
Asterisk security

access control, 145

asterisk.conf, 145

configuration management, 151

DACL, 145

directories, 145

file integrity, checking, 147

permissions, 145

permissions, script, 146

RBAC, 148

root-kits, 147

Tripwire, integrity checker, 147
asterisk.conf, 145
Asterisk@Home. See also SugarCRM

about, 99

AMP, 101

Asterisk management portal, 101

CRM, 110

PUBLISHING

customer relationship management, 110

features, 106, 110

harware requirements, 100

installing, 100

installing, advanced options, 100

PBX, creating, 107

SugarCRM, 110

underlying technology, 99
asterisk_restart.cron script, 142
asterisk-addons distribution, 94
automated attendants

about, 84

configuration file development, 85-87

B

Background action, 72
backup and maintenance
about, 135
areas, 135
asterisk_restart.cron script, 142
backup scripts, 139
backup.cron script, 140
configuration backup, 136, 137
disaster recovery plan, 143
log file backup, 139
monitor_mix.cron script, 141
package management system, 136
schedule, 137
server, restoring, 143
voice data backup, 138
voice data backup, rsync, 138
backup scripts, 139
backup.cron script, 140
Bastille, Asterisk security, 148
bchan, <device> option, 47
BRI, basic rate interface, 18

C

call detail records, See CDR (call detail
records)

call parking, 82

call queues. See queues

calls, handling, 69

calls, monitoring, 95

calls, recording, 96

case study, hosted PBX
configuration, extensions, 131
configuration, music on hold, 130

158

configuration, sip.conf, 130
configuration, voicemail, 131
configuration, zapata.conf, 130
configuration, zaptel.conf, 129
scenario, 129

case study, small business
configuration, agents.conf, 122
configuration, conference, 124
configuration, extensions, 125, 126
configuration, music on hold, 122
configuration, queues, 122
configuration, sip.conf, 123
configuration, trunkdial, 126
configuration, voicemail, 124
configuration, zapata.conf, 121
configuration, zaptel.conf, 121
planning, 120
scenario, 120

case study, small office/home office
configuration, extensions, 119
configuration, modules, 118
configuration, music on hold, 117
configuration, voicemail, 118
configuration, zapata.conf, 117
configuration, zaptel.conf, 116
planning, 116
scenario, 115

CDR (call detail records), 7, 91
cdr-csv module, 92
flat-file CDR logging, 92
security scenario, 92

cdr_csv module, 92

cdr_pgsql.conf, 94

CentOS, Linux distribution, 99

channels, 47

checksum, 147

chkrootkit tool, 147

Comedian Mail, voicemail program
about, 61
attaching to email, 63
configuring, 61
fast forwarding, 62
format, 61
message length, limiting, 62
rewinding, 62
timezone messages, defining, 62
voicemail box, example, 63
voicemail.conf, 61

communication devices, terminal equipment, 24

conf files
about, 39

PUBLISHING

sample files, 36
configuration file, samples, 36
context variable, queues.conf, 65
context, creating, 69
CRM. See SugarCRM
customer relationship management.
See SugarCRM

D

DACL, 145

database CDR logging, 93

dchan, <device> option, 47

Dial action, 72

dialplan creation, 69

DID, direct inward dialling, 83
direct inward dialling, 83
discretionary access control lists, 145

E

e&m, <device> option, 47
extension
actions, 72
creating, 71
extension number, 71
extensions.conf, 71
format, 71
outgoing extensions, 75
special extensions, 71
voicemail, transferring to, 73
extension length, 29

F

file integrity, 147

files mode, music on hold, 63
Flash operator panel, 105
flat-file CDR logging, 92
flexibility. See Asterisk@Home
FOP, 105

FXO signaling, 48

fxsgs, <device> option, 47
fxsls, <device> option, 47

G

Goto action, 72

H

H.323 protocol, 22
security, 150
handling calls, 69
hard phones, terminal equipment, 21

IAX protocol
about, 23
global options, 59
interfaces, 59
security, 151
users, defining, 60
iax.conf, 59
ifconfig, 101
integrated services digital network.
See ISDN connection
Internet relay chat, 155
ISDN connection
about, 18
BRI, 18
PRI, 18

L
libpri, 35
load balancing, 153

M

mailing lists, 155

maxlen variable, queues.conf, 65
meetme.conf, 66

member variable, queues.conf, 66
monitor_mix.cron script, 141
MP3, streaming files to handset, 63
music variable, queues.conf, 64
musiconhold.conf, 63

N

ntpdate program, 142

O

outgoing extensions, 75, 76, 77

159

PUBLISHING

P

parking, 82
parking.conf, 82
PBX
about, 5
Asterisk@Home, 107
call detail records, 7
call distribution, 7
call records, 8
communication devices, 24
hard phone, 21
line trunking, 6
soft phone, 23
station-to-station calls, 6
telco features, 7
phone tree, 84
Playback action, 72
postgres_cdr.sql script, 93
POTS line, connection method, 17
PRI, primary rate interface, 18
private branch exchange. See PBX
PSTN
E1 connection method, 18
ISDN (integrated services digital network), 18
POTS (plain old telephone service) line, 17
T1 connection method, 18
VolIP connection, 19
public switched telephony network. See PSTN

Q

Queue action, 72
queues
about, 64, 78
application options, 79
call distribution, 78
members, assigning statically, 80
queues.conf, 64, 78
variables, 64
queues.conf, 64

R

RBAC, 148

real-time transport protocol, 151
reload, 40

RemoveQueueMember application, 80

160

restart, Asterisk
about, 41
options, 40
retry variable, queues.conf, 65
rkhunter tool, 147
role-based access control, 148
root-Kits, 147
rsyncd.conf, 137
RTP, 151

S

sample configuration files, 36
scalability, 152
SELinux patch, 148
session initiation protocol, 11
SIP
about, 11, 22
configuring, 54
global options, 54
interfaces, 54
security, 150
users, defining, 56
sip.conf
about, 54
configuration for hosted PBX, 130
cosmall business, 123
soft phones, terminal equipment, 23
spans, 46
strategy variable, queues.conf, 65
su command, 151
sudo, Asterisk access restriction, 152
SugarCRM
about, 110
administration, 112, 113
calls, scheduling, 111
contacts, adding, 111
email, settings, 112
user management, 112
user roles, 113
support, 154

T

T1, defining as span, 46
telephone company (telco), 7
timeout variable, queues.conf, 65
timesync.cron NTP script, 142

PUBLISHING

Tripwire, integrity checker, 147 Z
U zapata.conf. See Zaptel
Zaptel

unused, <device> option, 47

V

Voice over IP. See VolP
Voicemail action, 72, 87
VoicemailMain action, 72
VolP

Asterisk as, 9

wW

WebMeetMe frontend, 106

channels, configuring, 47, 53
configuring, 44
extensions, 73

global options, 44
installing, 35

interfaces, 44

lines, device class, 45

T1, <device> options, 47
T1, defining as span, 46
terminals, device class, 48
zapata.conf, 48
zapata.conf, lines, 52
zapata.conf, options, 49
zaptel.conf, 44

zaptel.conf, 44

161

EEEEEEEEEE

